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Introduction

In many fields of sciences and engineering, we often need to minimize (or maximize) a function
f. There exists a lot of different kinds of optimization programs, for example combinatorial
optimization. In this master thesis, we will be interested in unconstrained optimization of a
multivariate function

min f(z)

where f(z) is twice differentiable. There exists a lot of algorithms which try to minimize such

functions, for example the gradient scheme:

T+l = Tk — Oékf/(ﬂ?k)

for some step size ay > 0. It is one of the most common and known scheme. This algorithm,
quite simple, is quite natural: we just follow the direction of the steepest descend. However, We
do not use the second order information, i.e. the Hessian of the function. One other very famous

scheme is the Newton method:

Thy1 =z — [ (2)] 7 (2)

The main property of this algorithm is its capacity to converge faster (under some conditions)
when we are close to the optimum. However, the scheme has several drawbacks: the inverse of the
Hessian is not always well-defined, and we do not have any guarantee on the global convergence

of the algorithm.

In paper [5] was proposed a cubic regularisation of the Newton’s method. The procedure is to
minimize a cubic global upper-estimation of function f at each iteration. With this trick, the

step xx11 — x will always be well defined, and we can estimate the global rate convergence.

The goal of this master thesis will be firstly to analyze with precision the behavior of this new
algorithm on strongly convex functions. During this analysis we will find that the regularisa-
tion does not work as well as expected on smooth functions, unlike the gradient method. We will

thus propose some variants of the original algorithm in order to have better global performances.






CHAPTER 1

Definitions and notations

1.1 General

We suppose that we work in the space R™. The inner product (-,-) : R” x R™ - R between two

vectors v, w € R" is

n
(v,w) = Z VW
i=1

We can thus define the norm || - || 57 for a vector v where M is a symmetric positive definite matrix:

lollar = /(M 0) = \/(v, M)

We will also use the Euclidean norm || - |2 = || - |7, where I is the identity matrix. For more

convenience, the notation || - || will be used for this norm.

The norm of a square symmetric matrix M can be defined as

[ (M, v) |

2w vl
o]

[M]} = [[M]]2 = max

where o; are the singular values of matrix M, indexed by decreasing order.

A square matrix M is called positive semi-definite, or M > 0, if and only if all eigenvalues \; are
non-negatives. For two matrices A and B, the notation A > B means that the matrix (A — B)

is positive semi-definite.

In this master thesis, we work with twice-differentiable functions f : R® — R,z — f(z). The
gradient f’(x) of these functions belongs to R™ and the Hessian belongs to R™*". If a function f

is twice differentiable and defined all over R™, we say that f € S:

feSe fR"—R, z+— f(x) and f'(z), f’(x) exist on R".

Since the main topic of this master thesis is optimization, we are interested in the minimal value

of function f, called f*. This value is reached at some point z*. We have thus the relations

f*=min f = f(z")
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and

x* € argmin f
x

If we suppose that f has one and only one global minimum z* then the notation * = arg min, f

will be used. Moreover, if the function f is differentiable, we have || f/(z*)|| = 0.

1.2 Convex and strongly convex functions

A twice differentiable function f is called convex (resp. strongly convex with constant p € ]R(J{ )
if and only if for any z in dom f we have f”(z) > 0 (resp. f”(x) = pl). For such functions, we
say f € SO (resp. f € SH).

1.3 Lipschitz-continuous functions

A function f is called Lipschitz-continuous of constant [ if and only if for all x,y we have

[f (@) = f)l <z =yl

where [ is a positive constant.

If f is twice-differentiable and has a Lipschitz continuous gradient of constant o then we say
f eS8, If fis twice-differentiable and has a Lipschitz continuous Hessian of constant L then

we say f € Soo,r. Indeed, if the function has Lipschitz-continuous gradient and Hessian then

f S SO',L'

1.4 Performance of a scheme

In this paper, we will build some algorithms in order to find an approximation of the minimum

of a function, i.e. we want to find f(x) s.t.
flz)—f"<e

where €, the accuracy of the approximation, is a real positive value. Any z satisfying this condi-
tion is called e-solution of the problem. The way used to find this approximation (in our case)
consists in building an sequence z; and f(xg) s.t. f(zr+1) < f(zx) and when k& — oo then
f(xg) — f*. For our purpose, it is more convenient to use the notation oy = f(xr) — f*. When

the minimum is unique, then the notation Ay, = x; — z* can be also used.

Indeed, the number of intermediate points x; depend also of the quality of the initial point
xg. We will use two different measures of quality of the initial value. The first one is very

intuitive and is dg. The second one is about the distance ||zg — z*||. Let us define the level set
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D ={x: f(z) < f(zo)} and suppose that D is bounded. Then we can define the diameter of this
set D :

D = max [z~ y

This value is very important because it is often used in the analysis of the performances of our

algorithms.

We will also have to analyse the performance of a scheme as a function of accuracy ¢, §p and
D. There exists some other measures of performance, but the only one that we will use is very
common. It is the worst-case bound in terms of the number of calls of oracle (i.e. computing
f(z), f'(z) and f”(x)). The main advantage of this point of view is that we can have a guarantee
about the maximal number of iterations. But the main drawback is that we cannot deduce the
average number of iterations. For example, the Simplex algorithm requires at most an exponen-
tial number of iterations to reach the desired solution, but in practice this algorithm converges

very quickly.

Sometimes we will also compare different schemes and try to determine which one is the best.
We will say that one scheme is better than another when the maximal number of iterations kyax
of the first one is better than the maximal number of iterations k. of the second for any value
of €, §p and D.

1.5 Rate of convergence

In this report, we will describe the rate of convergence of different schemes. For example, we will

say that a scheme has a linear rate of convergence when

for a positive constant ¢ (often not very large). This constant ¢ must be independent of dy and
D. In this case the maximal number of iterations of the scheme in function of D and ¢ can be

computed. Suppose we want d; < ¢ ; then the condition

1 k
_ <
<1+C) bo<e

is sufficient. However, since c is not very large, we can use the following relation

to have a better interpretation of the final result. We have now the stronger condition e~*¢y < ¢

kmax = 110g (50) . (1.1)
c

3

and kpax can be easily deduced:
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This rate of convergence is very fast : for example if we want to have a one hundred time more
accurate solution then we need log(100)/c more iterations. Any multiplication in the accuracy or
the quality in the initial point intervene in a additive way in the number of iterations (because
of the logarithm).

There also exists some faster rates of convergence. For example, the well-known Newton method
has a quadratic rate of convergence when the initial point is close enough to the optimal solution

(under some assumptions). We will say that a scheme has a quadratic rate of convergence when
1
5k:+1 < 2513

for ¢ a real positive value. Let us write an intermediate value ap = %5;6. Indeed, we have

g1 < a% and a sufficient condition to have an ¢ solution is

k
agg

Q1M

We see here that we need ag < 1, or §; < ¢, to have a guarantee of convergence. Now we can

easily deduce the maximum number of iterations kyax:

log(</c) |

kmax =1 T e N
o8 [10g(50/0)

Between these two rates of convergence there exists so-called super-linear rate of convergence:

- log(e/c1)
kmax = log, [1Og(50/02)} , (1.2)

where x is between one and two for some constants c¢; and co. Last but not least, there also
exists a rate of convergence called sub-linear. This rate is slower than the linear one, and takes

sometimes the form 5
0

o < p(k)

where p(k) is a polynomial function in k. To compute the maximum number of iterations we

(1.3)

need to solve 5
p(kmax) = j




CHAPTER 2

Main inequalities

In this chapter we introduce all necessary results related to strongly convex functions, functions
with Lipschitz-continuous gradient and Lipschitz-continuous Hessian. The majority of the results

of this chapter can be found in the book [4].

2.1 Strongly convex functions

There exists a well-known property coming from convex function : when we found a local min-
imum in a convex function, then we are sure that this minimum is global. However, we cannot
be sure that a minimum exists and is unique. But for all strongly convex functions there always

exists one minimum, which is indeed unique.

Moreover, this class ensures that the Hessian of the function is non-degenerate because if f € S*
then
(@) = pul, >0,

which means that the Hessian is positive definite everywhere. With this information we will be
able to build some algorithms which have a good rate of convergence to the global minimum. For
example, there exists a constant step size gradient method which has a linear rate of convergence

to the global minimum of such functions.

Note that the definition of strongly convex functions can be extended to differentiable functions.

If the following inequality is satisfied for any x,y

) = F@) = (f @)y =) = Sy — o (2.1)

then f is strongly convex. There exists a geometric interpretation of this result: for any point
x there exists a quadratic function which supports the function f. This property is very useful

when evaluated at the optimum. Since f’(z*) =0,

f@) = @) = Slla— | (2:2)

which gives us a relation between the accuracy of the value of the function and the proximity of

z to the solution.
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There exists a lot of very interesting inequalities for strongly convex functions but we will very

often use the following theorem.

Theorem 2.1.1. Suppose f € S¥. For any x,y € R™ we have
1
fy) = fl@) = (f(@),y —=x) < @Hf’(x) ~ I (2.3)

Proof: At first, suppose x is fixed. Then we can build a function ¢(y) :

By construction, ¢ € S*. Because ¢'(x) = 0, we deduce that z minimize ¢(y). If we use also

(2.1) we get the following relation

é(x) = min(2) > min | 6(y) + (¢'(4), 2 =) + Sl =yl V.

We can solve this minimization problem using the first optimality condition

¢'(y
dy)+uz-y=0 = zzy—i)-
By consequence, .
> R [P 2.
@) > 6(0) = 519 W)
Since this development is valid for any z, it is exactly (2.3). O

A very useful result using this theorem is when we use (2.3) at the optimum z* :

f(@) - fa®) < 21MHf’(w>H? (2.4)

because it gives us a very useful relation between the gradient of the function at x and the error

at point x.

Last but not least, there exists one other property which comes directly from convexity. For such
functions it is well-known that the tangent of the function at point x is a global lower-bound for

the whole function f:

fly) > fl@) +(f'(z),y — ).

We can thus write
fla) = f) < IF @Iy — |-

This property will be more useful for us when applied at the optimum:

fl@) = f@) < If" @) [l = 27 (2.5)
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2.2 Functions with Lipschitz-continuous gradient

This assumption is like the "dual" of strongly convex functions. The eigenvalues of the Hessian
have a positive lower bound, while the ones of functions with Lipschitz-continuous gradient are

bounded above by a positive constant o. It means that for any f € S, we have
1f'(y) = f@) <olly—=z| and f(z) =0l (2.6)

Knowing that a function has a Lipschitz-continuous gradient (also called smooth functions) is

very helpful: the graph of such function is between two quadratic functions!.

Theorem 2.2.1. Suppose f € S,. For any x,y € R™ we have
) = f@) = (f @)y — )| < Sy — =] (2.7)
Proof: For any x,y we have
1
flo) = 1)+ [ (Fatrly=a))y—a)dr
1
— f@)+ @y =)+ [ (Pt =) - @)y o)

Therefore, using the definition of Lipschitz-continuous gradient,

1
Iﬂw—f@%+ﬁ%ww—wﬂzul<f@+f@—x»—fu%y—@df

1
sArmuww@—x»—f@MW—mmT

1
SUH?J—JUHQ/ TdT
0

= Zlly—|?

O

With (2.7) we can prove a result which is very similar to (2.4).

Theorem 2.2.2. Suppose f € S,. For any x,y € R™ we have

1
f(@)+ (f'(@)y — @) + = |1f(2) = FWI* < fy). (2.8)
We can use this inequality at the point x*:
. 1

fl@) = f@") = o @) (2.9)

In this case the quadratic lower bound is concave, unlike strongly convex functions.
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Proof: The proof is very similar to (2.3). Let us fix some x € R™ and consider the function

Using (2.7) we have

and it is exactly (2.8) O

Smooth functions are very good for first-order methods. For example, there exists a fixed-step
gradient method for such functions which converges to a point which is not a maximum s.t. the
gradient at this point is zero. The intuition behind this condition is the following: if we ask for
the values f(x) and f/(z), then these values will be very close to the ones at = + ¢ where ||¢|| is

small:

f(@) = (f'(2),6) = Olel®) < f(a +€) < f(x) + (f'(x),€) + O([lell*)
1 (z) = f'(z + o) < olel.

In other words, we want a function which is robust over the impact of the argument zx.

2.3 Functions with Lipschitz-continuous Hessian

Like above, we will make another assumption over the robustness of the function. Since we are
interested in second order methods, we want functions for which the variation of the Hessian is
bounded:

1" () = f" @)l < Llly — =] (2.10)

We will thus assume that f € Sy 1. We can integrate two times the above condition, leading to

two very interesting inequalities.

Theorem 2.3.1. Suppose f € So.1,. Then for any x,y we have

IF6) ~ £@) ~ @) -l < gLy - @1)

F) — f@) — (P @y — o) — 5 (@ -y - o) < Dy -’ (212)

Proof: Indeed,

1
1/ () = f'(@) = (@) (y — 2)|| = H/O (@ +7(y —2)) = f(2)](y — 2)dr

1
<y -2l / 1" @+ 7y — @) — "(@))]| dr
0
1
gLHy—x!Q/O rdr

L
= S lly — 2l

10
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It is exactly (2.11). With a similar idea,

1) - @)~ (F @y -2)— 5 (@~ 2)y - )

1
| @ty =) = £@) - @ - )y - ) dr

1
< [ly — =] /0 If (@ +7(y — ) = f'(2) = 7f"(2)(y — )| d7.

We can now use (2.11), leading to (2.12).

11






CHAPTER 3

Cubic regularization of the Newton’s
Method (CNM)

We present now an algorithm (presented in [5]) used for minimizing unconstrained functions with
Lipschitz-continuous Hessian. This algorithm is an improvement of the Newton’s method, be-

cause this scheme converges everywhere in the domain and is always well-defined.

This new second-order scheme, the cubic regularisation of the Newton’s method (CNM), minimizes
a cubic model at each step. This cubic model is a global upper estimation of the objective function.
By analyzing the decreasing of this cubic model, we will be able to deduce the rate of convergence

of the algorithm.

3.1 Regular algorithm

The idea of the CNM is to minimize the cubic model (2.12). By minimizing this expression, we

are sure that the next iterate x4 satisfies
f(rea) < flaw).

Let us introduce the following mapping :
. / 1 " % 3
Ta(w) € argmin f(z) + (f(2),y —2) + 5 (f1(@)(y — o),y = 2) + - lly - 2|* (3.1)

Where M > L is a positive parameter.

It is important to note that Ths(x) is the solution of the following system of equations
1
f(@) + (@) (Tu (x) — @) + S M| Ta (2) = 2l - (Tha () — 2) = 0. (32)

The basic algorithm is to choose xi11 = Tas (k). In the rest of this report we assume that M = L

and T7,(x) = T for more simplicity.

From the first optimality condition (3.2) we can derive the rate of convergence (more detail in

5): y
- o
min | (21} < 0 ()

If we suppose f convex, we can have a better result.

13
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Theorem 3.1.1. Suppose that f is convex and has a non-empty set of global minimum X*. Also,
suppose that the value D (recall: the radius of the level set {x : f(x) < f(x0)}) is finite. Then,

o Ifdy > %LD3 we have

fzy) — f(z*) < %LD3. (3.3)
o Ifdp < %LD?’ we have ,
9LD

fzr) — f(2¥) < m (3.4)

We will admit this theorem without proof. The complete development can be found in [2].

This theorem means that the method convergences to a global minimum. We see also that the
rate of convergence is polynomial. Let us estimate the number of iterations to reach a precision

€. For that we need to solve the following sufficient condition,

9LD?

<
k+4a2 =%

and we can thus find an estimation on the maximum number of iterations:

LD3 LD3
Ry 220y o 2R (3.5)
€ €

Moreover, if we assume that the set of optimal points is globally non-degenerate with parameter

>0 (ie. (2.1) holds for x = z* and for any y) then we can prove a better local result.

Theorem 3.1.2. Suppose that f(x) is convex and admits a globally non-degenerate optimal set.
Then

2
1. If f(zo) — f(z*) > (3%) (%)3 = w the process converge at the following rate.
sU/4 < s/ k_1)4
k=% T ¢ (3.6)
2. If f(xo) — f(2*) < @ then the convergence becomes super-linear.

1
Or+1 <4/ 97352/2 (3.7)

The complete development can be found in [5].

We will try to deduce using expression (3.6) the maximum number of iterations needed from dy

to w. Indeed, we need to satisfy this condition to ensure §; < w:

53/4 _ 2@1/4 <o\,

14
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Thus, we find an estimation of the maximal number of iterations:

k<6 ([m v 1) <6 [‘50] v (3.8)

W

We will now try to find the switching value ¢ on d; which minimizes the total number of iterations
using the combination of (3.5) and (3.8):

9L D3 6 ml/‘i

¢ = argmin
x

The first optimality condition is

_7V9LDgc—3/2 + LC—3/4 —0.
2 41/4

Assuming ¢ # 0 we find

4/3 2
o T 2

The number of iterations needed for going to € = @ is thus bounded by

/LD /LD
9.18Y6, | == < 14.6,/ —. (3.9)
p p

After this phase, the scheme converge with a super-linear rate of convergence. We will wait a
little bit before making the precise upper bound, because we will see later better results when we

add the strong convexity assumption.

3.2 Minimal decreasing

Let us will analyse the minimal decrease between two iterations of CNM. Using the first order

optimality condition (3.2):

LA =[f(T) = f'(x) = (@) (T - z) — gIIT — z[|(T — ).

If we use now (2.11) we get (using M = L):

IF(T)] < LIT — =||*. (3.10)
Now consider again (3.2) and multiply it by (7'—x). It becomes (recall that we supposed M = L)

(@), T~ ) =~ (f"@)(T ~2), T~ a) ~ LT (3.11)

15
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Using (2.12) with y = T in combination with (3.11) we get

FT) < @)+ (F@),T — ) + 5 (F@)T —2). T~ ) + LT~

= f@) = 3 {(F@(T ~ ), T~ )~ =T~ 2’

1
2
wich leads us to an expression of the minimal decreasing f(z) — f(T):

fla) = $T) 2 3 (@) = 2),T = o) + ST~z (312)

We can also use (3.10) in this equation to get a relation between the decreasing and the gradient
at the point T

3.3 Accelerated algorithm

By using some appropriate estimate sequences, the algorithm can be improved for convex func-
tions. All details can be found in [2].

Initialization : Choose 29 € E. Set M = 2L and N = 12L. Compute x; = Ty (z) and define

1(z) = fla1) + §llz — xol®.
Iteration k> 1 :

_ : — _k_ 3
1. Compute v = arg min Y (x) and choose yi = 43Tk T 73Uk

2. Compute zx11 = Th(yx) and update

(k+1)(k+2)

> [f(xrg1) + (f (@rg1, @ — Tpq1)]

Y1 = Y +

We can show that the convergence of this algorithm is

flan) — s <0 [ LD (3.13
i) — f(x . .
F = T\ k(k+ 1)(k+2)

The big O is there because the complexity change in function of the update of 1, (x) up to a
factor. This function can, for example, be updated with linear of quadratic functions (in the
above case we showed the linear update). Indeed this result is much better than the regular

algorithm.

16



CHAPTER 4

Properties of the intersection of functional
classes

In general, we analyse the performances of a scheme over one "simple" and specific functional
class. However, sometimes an algorithm can have very different behaviour when we add additional
information over the function that we want to minimize. For example, under some assumptions
we can prove that the Newton’s method converges quadratically when we are close enough to the
optimum. But when we add the fact that the function is quadratic then the Newton’s method

converges in only one iteration.

The goal of this chapter is to derive some properties that we can deduce using the information
of the intersection of some functional classes. It will help us to analyse the behaviour of some
algorithms for functions which belong to several functional classes. Also, some classes will give
us a global upper bound, which can be useful for building a better algorithm based on the

minimization of the upper-estimations.

4.1 Functions with Lipschitz-continuous gradient and Hessian

We start from analysing this very important class: if some function f belongs to S, 1 then we

can apply either the gradient method or the CNM with some guarantees.

All functions f € S, 1, have the following two properties:

f'(y) oI, o>0,
£ (y) = f" ()| < Llly — .

However, we can put these two conditions together and try to have an equivalent definition of

the class Sy ..

Theorem 4.1.1. A function f belongs to S,.1, if and only if for all x,y € R™ and for all vectors

u € R™ we have

(") = £ (@))u,u) < min { Ly — allljul®; (o] — £"(x)}u, u)} - (4.1)
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Proof: First suppose that f € S, 1. Since f”(z) < oI we have for any u € R"

("W, u) < ollull? = ([01]u,u)
(" (y) = " (@)u,u) < {[o] — f"(z)]u,u).

Moreover,
(") = " @)]u,w) < f"(w) = F"@lul® < Ly = | fl«]?.

By combining these two inequalities we get the desired result. Now suppose that f satisfies (4.1)
and let us show that f € S, 1. First, we will prove that f(y) < o/. Indeed,

<[f”’(’;z)’]2u, u <o, u#0
(Lf" (y)]u, u)
N TR

Meaning that Apmax(f”(y)) < o. This condition is equivalent to

f(y) 2ol

for all y. Now we will prove the second condition. Indeed,

([F" () = " (@)u,u) < Lily — | [Jull*.

We can use this inequality with  and y interchanged to conclude that

" (W) = f"(@)]u,u) | < Llly — 2|l

Finally,
f/l y _f// T u,u
'@ = S @] gy
Il
and we get the result by taking the maximum over wu. O

Now suppose that the direction of u is fixed. One interesting thing to know is the norm of y — x
such that the minimum will switch between two values. We need to compute ||y — z|| which solve
the following equation:

Llly = alllul2 = (o] = " (@)]u, ).

We find easily that
([of — f"(x)]u,u)
Liful? ’

ly =zl =

18
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We can see that in fact the right hand side is homogeneous of degree zero in u. Let us introduce

a parameter v, (y):

([of — f"(@))(y — ),y — ) } .

vz (y) = min {1;
A Ly — P

We can recognize on the right the "relative" switching value when v = y — x. We can now derive

a weaker condition (but more useful for later) of inequality (4.1).

Corollary 4.1.1. If a function f belongs to S, then

(L") = '@y —x),y — z) < (y) Ly — | (4.2)

Proof: First, suppose that v,(y) = 1. In this case, by definition of v, (y),
Llly — 2|® < (oI = f"(2)/(y — x),y — x)

Thus we get the right expression using (4.1) with v = y — z. Suppose now 7,(y) < 1. Using the

same argument (4.2) is proved. O

We have now a simpler expression for the integration. We will now see two very interesting

inequalities, very similar to (2.11) and (2.12).
Theorem 4.1.2. If f € S, 1, then for any x,y:

2

(F) ~ &)~ @)y - 2).y—x) < (my) -2l ) Liy-=lF (@43

1 < (’Y:c(y)(l — ’Yz(y)) Vz(y)3> LHy _ ZE||3

2 * 6

(4.4)

Proof: Using the definition of 7, (y),
1
(f'y) = f(@) = @)y —a)y —x) = / (f'@+7ly—2)— @)y —2)y—z)dr
0

1
< 0/ min {7Llly - |*; (o1 — "(@)(y - ),y —2) } dr

Yz (y) 1
= [ Ly alfar+ [ (oI - @) - 2y - o) dr
0 Yx
2
= =L P (@) (0]~ @)~ ) - ).

If v.(y) = 1, then we get (4.3). If v,(y) < 1, we just replace ((¢I — f"(z))(y — x),y — =) by
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L|ly — z||*v2(y) to have also (4.3). Now we can use this result for the proof of (4.4):
J) = 1@) = (f' @)y =) — 5 (@ — o)y~ 2)
-/ Sy — ) — @) — 1@y — 2,y — ) dr
= [t i) = o) - Sty - 0ty - ) S

Y2(y) 1 1 2
S/ *LH?J _ .1‘”37'2(17' +/ ’Vx(y) o fYa:(y) LHy _ ngTQdT
0 2 v
Y

= (Y) T
:LHy _ wHB (’Yoc(y) — 'Yx(y)Q 'Yx( )3> ]

2 6

O]

We can remark that we have now a new upper bound (4.4) for functions f € S, . This upper-

bound combines two interesting aspects of the functional class:

e The first one is the local cubic approximation. When y is close to x, then the model is

cubic and thus gives us a very accurate approximation of f.

e However, when y is far from x then the model becomes quadratic. This quadratic model

will grow very slowly in comparison with the cubic one.

We will see later that this "switched model" (locally cubic, globally quadratic) will be very useful

for the interpretation of the behaviour of the CNM on some functional classes.

4.2 Strongly convex functions with Lipschitz-continuous Hessian

In this section, all proofs are very similar. That is why all results will be admitted without any

proof.

Adding the strongly convex property will ensure us that the function has one and only one global
minimum. Also, the quadratic lower bound (2.2) due to the strong convexity assumption will
ensure us a minimal rate of growth !. The consequence of this property is that the global rate of

convergence of the CNM will be improved on such functions.

Let us write down the formal definition of this class. A function f € 8507 1, if and only if the

function f follows these two properties:

f'y) =pl, p>0
1f"(y) = f"(x)|| < Llly — «|]

'Tn general we do not use (2.2). We prefer to use (2.3) which comes also from the strong convexity assumption.
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Like in the section above, we will use a parameter [, (y):

([f"(zx) = pl](y — x),y — x) } .

Aoty = min {1 Ly~ I

We can derive with this parameter the following theorem, which bounds below the function f by

a switched model (locally cubic, globally quadratic).

Theorem 4.2.1. Suppose f € SL, ;. We have

2
(7))~ )y 2y —x) > - (my) - ) ) Ly-= (@5

_ 3
F@) =@~ (' @)y = 2)—5 (" @)y — )y — o) > - (M”(l Bal)) | Balt) ) L2’

2 6
(4.6)

Unfortunately, we will see later that having a very precise lower bound will not give us more
information about the minimal decrease of the function f. However it does not mean that having

a strongly convex function does not impact the global complexity.

4.3 Strongly convex functions with Lipschitz-continuous gradi-

ent and Hessian

The last class which remains to be analyzed is 8!, . Any function f € S¥, satisfies

pl = f"(y) =ol, 0<p<o,
1" (y) = f"(@)] < Llly — |-

Unfortunately, we cannot derive better bounds than (4.4) and (4.6). But functions which be-
long to this class are very interesting for this reason: in [4] it is shown that strongly convex
functions with Lipschitz-continuous gradient are easy for first order methods. Moreover, adding
the Lipschitz-continuous Hessian condition will allow us to apply and compare the CNM or its

variants to the first order methods.

In [2] it is shown that the CNM enters polynomially to the quadratic region of convergence,
while some first order methods (say, for example, the gradient method) converge globally with a
linear rate of convergence, which is indeed much better. In the same paper it was introduced the

following open question to which we will try to find an answer:

"For the problem class S¥ |, can we get any advantages from the second order schemes being used

at the initial stage of the minimization process?’.
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4.4 Relaxation of the bounds for S},

In this section we will show weaker results of (4.4) and (4.6) by relaxing parameters ~,(y) and
Bz(y). The aim of this relaxation is to have simpler bounds, which is useful for example when we

want to minimize the model.

First of all we will introduce a new parameter 6,(y):

. o—
0. (y :mln{l; }
W) Llly — |

The main advantage of 6,(y) is that this parameter does not depend on a scalar product. Also,

for any z, y we have

Which allow us to replace v;(y) and 5;(y) by 0,(y) in (4.4) and (4.6). Finally, if f € S(’;’L we can
put the two bounds together:

Corollary 4.4.1. If f € S’iu then for any x,y in dom f :

2
(70— 5'(@) — 5 (@) — ),y — )] < (em<y> - %Y) ) Ly-af* @7

fy) = f@) = (f'(x),y —x) — 5
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CNM applied to strongly convex functions

Let us analyse the global behaviour of CNM on strongly convex functions. A local result is given
in [2]: the CNM converges quadratically when we are close to the optimum, like the Newton’s
method. But the convergence of the algorithm in the first stage is still proportional to v/D (where
D is the diameter of the set {z : f(x) < f(x0)}) when we add the smooth assumption. This is

quite bad because the gradient method achieves a much better global complexity.

The goal of this section is first to describe with precision the behaviour of CNM on strongly
convex functions with Lipschitz-continuous Hessian. Then we will show some specific difficult
functions for CNM.

5.1 Impact of the strong convexity assumption

We have seen before (equation (4.6) ) a new expression of the lower bound of a function f € S, ;.
This new expression can now be used to characterize with more precision the decrease of the

function between two iterations:

Lemma 5.1.1. Suppose f € St ;. Then

LIT =2l + 2 (" @)(T —2), T —z) (5.1)

2

/Bac(T)(l — 6$(T)> +1 533(T)3
o) - 1 < ( : =

Proof: By using (4.6) in combination (3.11) with we get:

/Bac(T)(l — /BQC(T)) - 5JJ(T)3> L||T—:E”3

)= e (T = 2.7 ays r-alp > - (2L (

which leads us to the desired result. O

This is for us a bad news: improving the lower bound (2.12) with the strongly convex assumption
does not gives us additional information on the minimal decrease. However, we can use this

assumption in (3.12):

1
fla) = F(T) 2 5

L
> ST - ol + ST — 2.

(/@) ~ ), T~ ) + 2T~
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However this relation is difficult to use. This is why we will decompose the inequality into two

simpler relations:

i
@) = [(T) = T — =, (5.2)
L
F@) — F(0) = Z|7 2 (5.9
The first inequality will be used when we are close to the optimum because ||T° — z||* will be

larger than |7 — z||3. We will thus use the second one to describe the first stage of the algorithm.
Sometimes we prefer to use (5.2) and (5.3) with (3.10):

f(@) = (1) = ZZIF D, (5.4)
fla) = 1(T) = = (D (55

5.2 Stopping criterion

The main goal is to find x : f(z) — f(2*) < e. We will try here to have similar stopping criterion.

For example, a more interesting condition can be on ||z —T|| or || f'(T)]|, much easier to compute.

Lemma 5.2.1. We have
. 1
f(T) = f(a") < ﬂllf'(T)H2 (5.6)
L? 4
f(T) = f(a™) < @HT — | (5.7)
By consequence, if one of these conditions is satisfied,

1@ < V2,
2
o =71 < §f F3e,
then f(T) — f(z*) < e.

Proof: First we will prove (5.6). Using (2.4) at z =T
£T) = 1) < 57T (53)

Having i“ f/(T)||? < ¢ ensures us the desired accuracy. Now we will prove (5.7). If we use (3.10)

on (5.8) at z =1
2

f@?—ﬂﬁ)éimT—ﬂﬁ

Asking %HT — z||* to be smaller than e gives us (5.7). O
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For theoretical purposes we may be interested in a stopping criterion on ||z — z*||. We will see

later that we can characterize the quadratic region of convergence with this value.

Lemma 5.2.2. We have I
FT) = f7) < 2o - P (59)

Proof: Start with the upper bound of (2.12) at y = T*
FT) < @)+ (@), T = 1) + 3 (@)@ =2, T =) + ST~
By definition of T"
FT) < min | £2) + ()9 = 2) + 5 (@ =2y — ) + Sl —al?].

We can now use the lower bound of (2.12) in the previous inequality:

F@) + (M a)y =)+ 5 (@) — 2y =)+ Sy~ < F) + Flly el

leading to
) L
FT) < min | £() + 5 ly — 2l

If we choose y to be equal to z*, we get exactly (5.9). O

One can see that we could also use the lower bound (4.6). Using this inequality leads us to a

little bit stronger (but very similar) result, but the expression is too complex to be useful.

5.3 Global complexity

5.3.1 First stage of the minimization process

We will now try to describe with precision the global complexity of the CNM when applied on
strongly convex functions with Lipschitz-continuous Hessian. We will derive first the asymptotic
rate of convergence, i.e. the bound on the maximum number of iterations when we are very far

from the optimum.

Theorem 5.3.1. When applied on functions which belongs to S~ ,, the rate of convergence of

oco,L’
the CNM is bounded as follow:

S > (1 + j%) St (5.10)

where K = %, /2. Using the relation (1.1) the mazimum number of iterations is bounded by

D LD
kL < g log <5€0> = \/3§ - log (?) (5.11)

25



CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

Proof: Let us start from (5.5) and decompose ||f'(T)|[*/? into || f'(T)|||lf(T)||*/?. We can use
the expression (2.4) to bound | f'(T)|| and (2.5) to bound ||f'(T)||"/?:

I/ (T)| = /20 (T) — f(z*)

e L B e

Finally, using these two inequalities on (5.5) (where zy = x and x 1 =T),

f(xr) = f(Zry1) = Ok — Opg1 > f”f (k+D)[If (& + 1)/
e

we get the desired result. O

Despite how the expression looks, the rate of convergence is not linear because kyax grows in v D
and not in log(D). However, the result is global, meaning that the CNM will converge for any
starting point zg. Also, the CNM will reach the optimum at any accuracy with a finite number

of operations.

We can also see that the expression is quite strange: the decreasing is leaded by a coeflicient
which depends of D. Before going further, we will analyse this expression. Assume D very large,

then we can use the first-order approximation:

1 K
(Sk < K) (5]6,1 ~ <1 - ) 5k71-
(”@ vD

With (2.2) we can deduce that
9 1/2

p<|tal (5.12)
s

Then,
k

K K
- [25) " e [25) " "
1 1

Now we can use one more time a first-order approximation to have a lower bound on the rate of

o <

convergence in the worst case:

1/4
pK* /63/4

We see here clearly a polynomial expression of the decrease of the function. Note that we can
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also replace the value of D using (5.12) in (5.11):

= o
(%
S

[

k‘f&gx < [Klog (io) .
Surprising enough, this expression is worse than (3.8) despite the "linear-like" expression (5.10).
However, it gives us a good estimation of the relation between the number of iterations and D:
(5.10) grows is O (@log(D)) while (5.10) grows in O <D3/4) (if we use (3.3), assuming that
we have done already one iteration). If we compare it with (3.9) (assuming that ¢ > @), then
we remark that the estimation is not so bad : indeed asymptotically this precise bound is much
better, but the constant is also higher, which means that for D not too big, the two bounds are

quite equivalent.

Despite the fact that (5.10) is not the best bound, the expression of its maximum number of
iterations and its rate of convergence summarize well the behaviour of the CNM on strongly
convex function with Lipschitz-continuous Hessian. We will see also later that the expression

(5.10) is very similar to the complexity of the fast gradient method applied on 5507 I

5.3.2 Super-linear and quadratic rate of convergence

Like the Newton’s method the CNM is able to converge faster when we get closer to the optimum.

Let us introduce two switching values w; and wo:

3 2 I 3 ,u3 4
— —_ —_ = —_— = — . .1
L (L) (2) 2T o T g™ (5.13)

Those two switching values are conditions on §;. Let us first prove the super-linear then the

quadratic rate of convergence.

Lemma 5.3.1. Suppose f(x) — f(z*) <wi. Then the CNM converges superlineary:

1
Spyr < 4| —06 (5.14)
w1

and the number of iterations needed to reach € is

log (2
k), < logs log() | (5.15)
log( )

€
do

iy

Proof: Use (5.9) then (2.2):
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It is exactly (5.14). Denote

Then,

is sufficient, leading us to (5.14). O

We can compare this super-linear rate with (3.7). First of all it is obvious that the region of super
linear convergence of (5.14) is bigger and the coefficient which multiply 52/ ? is also smaller. We
can thus conclude that the rate (5.14) is a better result that (3.7) in any cases. Now we will see

the quadratic rate of convergence of d; (presented in [2]) and ||zg11 — |-

Lemma 5.3.2. Suppose f(x) — f(z*) < wy or ||zg — z1]] < % Then the CNM converges
quadratically:

L

lzgs1 — 2kl < ﬁka — a1, (5.16)
1

Opp1 < —6%. (5.17)
)

Therefore, the number of iteration needed to reach € is

1 w2
ko < logs [Og(; )] : (5.18)
log (5—5)

Proof: Let us use firstly (3.11). Indeed,
1
L @INT = ]| = (f"@)(T = 2), T — @) + SLIT - z[|®.
Since f is strongly convex (meaning that f”(x) = ul) and if we forget the last term,

1" @)l = plleess — .

Now, use (3.10). We get

L
lTrs1 — zell < ;Hﬂﬂk—l — g ?

If ||zg — 21]] < F is satisfied, then the above sequence converges to zero.

We can now build a stronger condition if we use (5.2):

3
f(@—f(T)ﬁ%:wl = 0p < =5 = wi.
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We can also describe the rate of convergence of d;. If we use (5.4) then (2.4):
1 f
ok = flak) = f(@p41) 2 ﬁllf’(xm)ll 2 ﬁ\/2u5k+1.

Leading us to the expression (5.17), with the same condition of convergence. O

5.3.3 Bound on the total number of iterations

We will try here to put together all previous results in order to have a precise bound on the total
number of iterations. We will assume that we begin very far from the solution (D is big) and

that we want a very accurate solution (e is very small).

We have already computed the number of iterations in the first phase (see (3.9)). We will now
try to compute the minimal number of iterations in the second phase, i.e. when §y < w (where
W= 15%) Let us first estimate a condition on d; for which the super-linear rate converges faster
than the quadratic rate. We need to find ¢ such that

[ Lz _ 10
w1< —w2C~

2 3

wy  2u
- =7 5.19
¢ wp  9L2 ( )

We see here that the value of ( is larger than @. It means that at the end of the first phase, we

We find

have a point which is already in the region of quadratic convergence. Let us estimate the number
of iterations in this phase using (5.18):
log (*2)

k <logs <log (Uf)) = logy (log4 <a::2)> .

We have now a good idea of the total complexity of the CNM :

LD
Fomaxe < 14.6,/7 + log, (1og4 (“f)) . (5.20)

We see that the number of iterations is proportional to the square-root of D. Paper [5] compared

the performances of the CNM with the performances of the optimal first-order methods for smooth
strongly convex functions (see [4] for more information). Let us call L the largest eigenvalue
of f”(x). Since we work with functions with Lipschitz-continuous Hessian, we can estimate
o =L+ LD. The complexity of the optimal first-order method is of the order of

o ( [L+LlD, ((ﬁ+LD)D2>) |
U £
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We conclude that for strongly convex functions the performance of the CNM is much better than
the performance of the first order method on our class of problem. Note that with the complexity

bound (5.11) we have the same conclusion.

5.4 Examples where CNM works bad

We have seen before a bound on the total number of iteration for the CNM. We have also seen
that the number of iterations grows in O (, / %) We will try here to analyse several functions
which are difficult to minimize with the CNM.

5.4.1 Intuitive example : smooth approximation of absolute value

First of all we will analyse the performance of the CNM on a smooth approximation of absolute
value. Let! f(x) = log (e* + e~%). Indeed,

o fl(zx)= Ez;z:z ~ sign(x).

o f"(z)=1—f'(z)?, f(0)=0=z*=0.

8(e®—1 41 2x
o /@)= M <1 s D=1
Let us call D = |zg — z*| = |xg|. For more simplicity, we will assume that xq is positive and very

big and that ¢ is not too small. We can now deduce pu
p=f"(x0) = f'(20)* >0

meaning that the function is strongly convex over the domain {z : |z| < D}. Indeed, the
parameter u decreases a lot in function of D and tends to zero, meaning that f is "only" strictly
convex on R. The goal of this example is not to show the worst case function but to understand
intuitively the characteristics of a function which is difficult for the CNM. Since we assumed that

€ is not very small and = positive, we can write an approximation of the mapping 77 (x):
: 1 3
Ti(z) = argmin (y —2) + ¢y — 2",
because f'(x) ~ 1 and f”(x) ~ 0. We have thus
TL (:B) =T — \@

We can easily compute an approximation of the number of iterations:

D—c¢

k ~ .
V2

'There exists other kinds of smooth approximation of |x|, like v/e + 2.
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We see here that the number of iteration is much worse than (5.20). It is due to the fact that p

is function of D.

The main characteristic of this function is the (almost) constant gradient f’(x). The norm of
the gradient does not increases when D is larger. So one characteristic of difficult functions is
having a gradient which does not increase a lot when we are far from the optimum, while staying

strongly convex. If we use (2.2) and (2.4) we get

plle =2 < [Lf ()]

For more simplicity we will work in one dimension. If we take the lower-bound and integrate one
time, we get

o M .
f@) = fa) = B — )2,

This is indeed a quadratic function. We can thus expect that kind of functions is difficult to
minimize with the CNM.

5.4.2 One-dimensional quadratic function

We have seen before an intuition about a difficult class of functions: the quadratic functions.

However, for such functions, L = 0 and the CNM converges in only one iteration. For now,

assume that we work with f(x) = ‘%2 and we want a precision not too small. Indeed, p = 1.

However, the estimation of the Lipschitz constant is pessimistic: L = 1. Let us now write the
mapping 717 (x).

1 1
Tr(z) = argmyin x(y —x) + i(y —z)*+ 5

The first order optimality condition is

1
T—E(T—x)on.

We can now compute the explicit expression of the solution T’
T=x+1—V2xr+1>zx—+V2x.

To avoid negative numbers, we suppose z > 2. Suppose we want to reach a precision . This

condition is strictly equivalent to

ek — 2" = llzkll < Ve.

We can now compute the minimal number of iterations to reach this accuracy:

Ve > xp =Tr(xk—1) > tp—1 — /2xk—1 > x0 — k\/Zo.
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e BB B

We can compare this lower bound to (3.9):

| LD
kmax < 14.64/ — = 14.6V D.
7

Both bounds grow in v/ D, meaning that we have a good upper bound, describing nicely the

Leading us to

complexity of the CNM applied on the class St ;. One can say that assuming an error on the
parameter L is kind of "cheating". In practice, we can run the algorithm with bad estimation of
the parameter L, but let us suppose that we have a subroutine which estimates perfectly a local

value of L. We will now build a very similar function. Call

Now we will build g(x) € S} :

72
g(xz) = <22> sin(hix) + (he + u) Z? (5.21)
g (x)=— <:i) cos(hiz) + (ha + p)x + Zl (5.22)
g"(z) = hosin(hyz) + he + p. (5.23)

The behaviour of the CNM on g(z) is very similar to (1/2)z%. For the illustration (see figure
(5.1)), let us see the graph of g(z), (1/2)z? and  with 4 = L = 1 and ¢ = 2. We see on the
figure that g(z) are between 42? and $z. We have also that ¢’(z) and ¢”(z) is between the
gradient /Hessian of the two square functions. We can thus assume that when we apply the CNM
algorithm on g(z) the number of iterations will also grow in O(v/D), while having a local value

of the parameter L equal to one.
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Figure 5.1: Comparison of the graph of some functions in Si I
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CHAPTER 6

Combining gradient method and CNM: the
hybrid scheme

6.1 Differences between the gradient method and CNM

In the previous section, we analysed the complexity of the CNM on strongly convex functions,
and we found that a bad function is the quadratic one. The bad news is the following: the
example 22 belongs also to St ,. We know that for this class there exists a gradient method

which converges linearly, and the optimal method for this class has the following complexity:

kr?lg::(imal method < \/jlog (560> ]

The number of iterations grows in log(dp)(and, by consequence, also in log(D)), which is much
better than the CNM. It is very weird, because adding one more information (in this case: the
function is smooth), does not affect the behaviour of the CNM.

The main reason is the following: we have seen before that the CNM minimizes an auxiliary
function ms(x) (model of order 3) to find the next iterate. This secondary function is a global
upper-bound, defined at (3.1). Let us compare this cubic model with the bound computed at
(2.7):

ma(y) = f(2) + (f'(@),y @) + Zlly - o]

The minimiser of this function is 211 =y — 1 f'(z1). We can easily deduce that f(y) < ma(y).

We have in fact here a quadratic model, which is also a global upper-approximation of function f.

We will now compare the two bounds. Suppose that we are looking at y which is very far from z
(for example when we perform large steps). Then the error between the two models is of the order
of %Hy — z||?, meaning that for large steps the cubic model m3(y) is not useful in comparison
with ma(y). However, when we are very close to z, then the conclusion is not the same: the
approximation is much better with the cubic model. Because the two aspects are very important
for the approximation of the function, we will thus analyse the hybrid method, which consists to
take zp4q :

e € axgmin [ma y), ma(y).

The general behaviour of this new algorithm will be the following : we can expect that the hybrid

method will take gradient steps at the first stage of the minimization process and CNM steps for
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the last phase.

We should think at the fact that for this algorithm we need one more parameter o. Having a
good estimation for such parameter can be sometimes difficult to obtain. Also, an adaptive al-

gorithm which implements this method has to handle two different parameters, which can be hard.

In this section we will work firstly with function with Lipschitz-continuous gradient and Hessian

(i.e. functional class S, 1,). If needed, the convexity or strong convexity assumption will be added.

6.2 Complexity analysis

We will now try to derive the rate of convergence of the hybrid algorithm. We have seen before
that we expect the gradient method better than the CNM when we are far from the optimum.
If the algorithm takes the gradient steps at the first stage of the process, it means that

5 I @I < (@), T = 2)+ 3 (@)~ ), T — ) + T~ 2

We can thus expect a condition over the gradient : when the norm of f/(z) is large enough then

the gradient step will be taken.

Lemma 6.2.1. Suppose f € S, If we have

2

I @) = 8% (6.1)

then min, ma(y) < miny, ma(y).

Proof: For more convenience in this proof, call @ = a\/% . Consider the following inequality in

variable z:

We can show that this inequality holds for z > 2Q. Let /|| f/(z)|| > 2Q. We can thus write

LF @) 20 )]
2

Q2
- >0
3 =

Q_z

After a rearrangement of the terms, and by multiplying both sides by [ (x)H:

/ 2 / 3/2
7@ S 2@,

Q@
= Q@+ @

We can now replace ) by its expression:

I ()] 2|l £ ()]} **
25 (77

T\ et
e + 27 @)
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The left-hand side is exactly f(x) — min, mo(y). So, focus now on the right hand side of the
inequality. We can use (3.11) to deduce that

L
I @I = ZIT ==

If we use this intermediate result on our right hand side, we get

I @7 L o
L > 2T - af*+ 2T - 2

Since f has a Lipschitz-continuous gradient, f”(z) < oI:

! 2
Hf (U)|| éHT o .’L'||3 + % <Jc//(x)(T — J?),T — .%'> .

We can now use (3.11) to add "zero" to our expression, leading us to

! 2 1 L
WS gy r -2y - L)@ - 0.7 -2y By o
We can recognize the right hand side of the inequality to be f(x)—min, m3(y), which proves the
desired result. ]

We have seen here that the gradient method will be very efficient during a long time. Whatever
the initial point will be, the gradient step will be chosen while the norm of the gradient is bigger
than a constant value. Thus, for D big, we can suppose that the total complexity is comparable
to the complexity of the gradient method only. However, if very-high accuracy is needed, then
the CNM step can be also useful: for example the convergence is quadratic for strongly convex

functions.

6.2.1 Global complexity for convex functions

Now we will add the convexity hypothesis. Recall that for such problem there exists (not always)
a convex set of global minimum X™* of the function f. We will suppose in this section that this
set exists and is bounded. We will also suppose that the value D is also bounded and very big,

and the accuracy € > 0 is very small.

First stage: gradient method

We have seen before that the gradient method will be used when || f'(z)|| > 8%2. We can prove
that the rate of this method is polynomial. Indeed, by definition of the gradient step,

Fla) — floe) = oo F @)

o3

> 32?
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Since f(xo) — f(z*) > f(xo) — f(zx) > 4F, we have

L2
k< —=0do.
= 32530

By (2.7) we have that dp is bounded by %D2, leading us to a bound on the number of iterations

k1 in the first phase:
L2
6402

ki < D2 (6.2)

Last stage: Hybrid method

We have computed before the number of iterations for the gradient method. We can derive here

the general expression of the rate of convergence:

20D?

flow) = Fle) < T

We can now use this expression with (3.4) to deduce the rate of convergence of ;. Since we take
the best step between the gradient method and the CNM, we have

(k+4)?2 k+4

Let us have a switching value  in function of D, meaning that & solves

9LD?*  20D?
(k+4)2  k+4

We find

~ 9L
k=—D —4.
20

Note that we cannot say that we already reached this switching value after the first phase because
(6.2) is an upper-bound on the number of iterations. Also, having more than (6.2) iterations does
not means that we will always use CNM because. This switching value just tells us that the rate

of convergence of the algorithm is characterized by the rate of the CNM.

Once this switching value is attained, we have to finish the minimization process by ko iterations,

with ko s.t.
9LD3

= <
(ko + max{k;k1} +4)% — ©

Note that we cannot bound D because it can be as large as we want (if we want to bound D we

need a stronger assumption than convexity). We can thus obtain a sufficient condition for ko:

9LD3
€

ko

Y

— max{k; k1 } — 4.
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Total complexity

We have seen that for the first phase we bounded the k; first iterations by a fixed value (defined
in (6.2)). Then, we needed to reach the switching value k. In this case the required number
of iterations is max{0; k— k1}. During this phase, the rate of convergence is characterized by
the decrease of the gradient method. Finally, once this switching value is attained, the rate of
convergence is bounded by the expression of the rate of the CNM. The total number of iterations
kmax is thus bounded by

z LD? : LD?
Fmase < k1 + max{0; k — ki } + 97 —max{k;ki} —4= \/T—zx

Surprising enough the total number of iterations is in fact the number of iterations needed when
using CNM. We can thus deduce that the hybrid method is not really useful on this class of

function. However, we need to keep in mind that at the first stage of the minimization process

we use only gradient steps, which are much more easier to compute than a CNM step.

6.2.2 Global complexity for strongly convex functions

In chapter 5 we noticed that the number of iterations of the CNM is quite big in comparison with
the gradient method when we begin far from the optimum. However when the accuracy ¢ is very
small, then the CNM is much more useful. Combining the two methods to minimize a function

f which belongs to the class Sf;’ ;, seems intuitive and efficient.

Before entering in the complexity analysis, we have to notice that for this class the optimal step

for the fixed-step gradient method is in fact (see [4])

2

1.

Th+1 = Tk —

However, this step length is too big when p — 0 (i.e. when a strongly convex function is close
to be a strictly convex function). Because we were interested in convex functions, we will let the

coefficient % instead of . This will not affect the final conclusion, but the bound on the total

2
o+u
number of iterations will indeed change up to a scalar factor.

First stage: gradient method

In this case, we can show that the rate of convergence is linear. Indeed, since we use the gradient

method, we can deduce the minimal decrease by replacing y — x by _71 f(x) in (2.7):

1
Opy1 < Of — %”fl(fﬂk)HQ-
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We can now use (2.4) to bound || f'(z)]]:
6kz+l < (1 — Z) O < (506_5(]“_1). (63)
We will now derive the number of iterations in the first phase. If we use (2.9), then

1
7 @ <
(o2

We can deduce with this result and (6.1) that the number of iterations kj in the first phase is
bounded by

3 1.2
32% < 5k;1 < 506_%k1 = k‘l < glog <320_3(50> . (64)

At the end of this phase we have the following accuracy

0,4

el (6.5)

1
Sk, < @Hf%xkl)HQ < 32

Second stage: Hybrid method

When the first phase is finished, we need to reach the region of super-linear convergence of the
CNM with the hybrid method. We have seen that after the gradient method phase, we have that
the accuracy dy, is bounded (see the expression (6.5)). The region of super-linear convergence is
{z: f(z) < w1}, where w; is defined in (5.13).

In this phase we do not have any guarantee that we will go faster than the gradient method.
Therefore, the rate of convergence is still (6.3). The number of iterations ks of the hybrid method
in this phase must ensure that dxc(x, k,] goes from g, to the region of super-linear convergence.
At first, let us see for which value of § the rate of convergence of the gradient method is equal to

the super-linear rate:

1 2
(1—“)5:,/53/2 = 5:w1(1—“> .
g w1 g
The number of iterations ko must therefore satisfy oy, < wq (1 — 5)2 The following condition

_L
6]616 Uk2 < w1

is thus sufficient. We can thus bound ko by

kggglog LZ Sg
K wl(l—g) K

4log (Z) +2log (3(2#))] . (6.6)
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The accuracy at the end of this phase is as follow:

Sy < w1 (1 - “)2. (6.7)

2

Last stage: CNM

Now we are in the region of super-linear convergence of the CNM. The gradient method becomes
now less useful because we do not have any guarantee that the gradient method will converge

faster when we are close to the optimum.

We need now to reach the region of quadratic convergence. We already computed the switching
value (¢ in (5.19) (i.e. the condition on § when the super-linear rate is slower than the quadratic
rate). We need thus to go from d, to ¢ with a super-linear rate, leading to the following sufficient

condition on the number of iterations k3 in this phase (where ag = dx /w1 ):

3/2

<

w1

By consequence, the bound on k3 is

ks < logs/s

log () bg(g)g)) .

)
oz (22) “log (1

At the end of this phase, we have d;, < (. Now we need to compute one last time the number of

iterations k4 for going from ( to € with a quadratic rate of convergence. Let aj be now f}—’;:

™ |

agk <e = ky < logs log% (6.8)

Total complexity

Since we have computed the complexity of all phases, we can sum all k; in order to have an idea

™ | =

of the maximal number of iterations kpax of the hybrid method:
log (4)
+logz/s | — i

L? o 16 9
Kmax 1 ——0 41 — 21 — ——F——~ | +logy1
' —ulOg(W °>+ os () + 0g<3<1—5>> og<1—5>)+0g2 °5

We can summarize this result with the O notation, assuming dy very big and ¢ very small:

L? 1
Fmax = O (U log <350> + log, log s > . (6.9)
7 o 9 €

This expression tells us that the number of iterations is, as expected, of the order of the number of

iterations of the gradient method needed to reach the quadratic region of convergence combined
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with the number of iterations of the CNM once this region is attained.

Note that for this scheme the most of the work (the k; first iterations) is achieved by the gradient
method. Also, the CNM step is at least as complicated to be computed as the gradient step,
meaning that the total number of iterations k4. itself is not really relevant alone, but must be

presented as kgradient + k:hybrid-

6.3 Conclusion

The hybrid method is very intuitive and gives us acceptable results: for strongly convex functions
we ensure at least the linear rate of convergence for any starting point, and at the end we will

converge very quickly to the optimum.

For convex function the conclusion is mitigated: we have seen that the number of iterations of the
hybrid method is not better than the CNM. However we need to keep in mind that this analysis
only take care of the worst case: In the average case, it is obvious that the hybrid method is at
least better than the CNM or the gradient.

The main drawback of this method is o, a new parameter needed to run the hybrid algorithm.
The estimation of one parameter is much easier than two. Despite this fact, the gradient step is
free to compute in comparison of the CNM step. If we can have a good a priori estimation of
o and L then the hybrid method is a good choice for minimizing strongly convex functions with

Lipschitz-continuous gradient and Hessian.
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CHAPTER 7

Minimizing a more accurate model: the
v-method

7.1 DMotivations

In the previous section we analysed the hybrid method: assuming that we know the two param-
eters o and L, we perform simultaneously a gradient and a CNM step, and we take the best one
between the two. However, the model that we minimize is not convex. We can imagine taking

the "convex hull" of the two models, but this task can be complex!.

We can us make another suggestion: instead of taking the minimum of the two models ma(y)

and mg3(y), we can minimize directly the model (4.4) (we will call it the y-model or m.(y)):

+

(1) (1 —2(y)) %(y)> _
2 6

min £(2) + (7' (@), = )+ 3 (@) — 2y — ) + gy — ol (2

=my (y)

By construction, the y-model belongs to S, 1. Also, we have

(the derivatives are easy to compute since we are around y = z, meaning that ~,(z) = 1). The

second derivative of this model is

~

5(y) = {fﬁ(x) T a0~ D —2)7 if 72 (y) =
ol if 72 (y) <

If we add the fact that m,(z) € S, 1, this expression leads us to the relation m[(y) = f"(z),

meaning that if f is strongly convex, then the model will be also strongly convex (of parameter

Amin[f"(2)])-

In fact, taking the minimum of the two models is more or less equivalent of minimizing the convex hull of the
two models.
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7.2 Complexity analysis

This model looks very promising: we bound a function f € 8!, by another function in S%,. We
can thus conclude that m.(y) is the best global upper-bound for this class. We can thus expect

from this model a performance which is at least as good as the hybrid method.

We can also remark that m., is similar to the hybrid method, because the model is both quadratic
and cubic. When the step size is small, then 7,(y) will be equal to one. Therefore, we have in
this case m(y) = m3(y). However, suppose the step size is very large, i.e. 7;(y) — 0. In this
case m~(y) = ma(y). So for the extreme cases the two methods are equivalent. The advantage
of this method is when m3(y) is comparable to ma(y), i.e when v,(y) is not too small, but below
one. In this case we can see with the -model a modified gradient step which is more aggressive.

Suppose 7, (y) < 1, then m(y) can be written as

g z 3 x 2
() = J(@) + (/@) y — ) + 2y — 2l + Llly — (” W”aly) ) <mo(y). (T1)

<0

We will see that this expression leads to longer steps than the usual gradient method.

With the previous results, we can thus deduce that

m.(y) < min {ma(y) ; ma(y)}.

The complexity of the v-method is thus at least as good as the hybrid method.

Unfortunately, because v, (y) can be as close to zero as possible we cannot improve the complexity
bound (6.9). But in practice the algorithm converge a little bit faster when 7, (y) becomes not
too small. The usefulness of this scheme is finally quite mitigated: we have a method which is a

least better than the hybrid method, but the global performances are not really improved.

We can confirm this fact by a numerical example. Let us take the function g(z) defined in (5.21)
with parameters u© = 1, 0 = 20 and L = 0.01. Suppose that we want a very large € such that
we have always v, (zr11) < 1. Suppose also that we minimize this function with the gradient

method and the y-method with an error on the parameters (& = 10000 and L = 100L).

In this case, we can see in figure (7.2) that at the beginning of the process, 7, (y) is very close
to zero. This is why the global complexity is not better than the gradient method (this fact is
confirmed with figure (7.1): at the beginning, both method converge at the same rate). How-
ever, when we get closer to the minimum of this function, then we see that the convergence
becomes incredibly fast. We can explain this fact with the figure (7.2) and formula (7.1). We

see that because of the right parenthesis we use a much larger step than the gradient method,
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leading to a better local rate of convergence, which spares more or less the half of the number
of iterations of the gradient method. Despite the fact that the theoretical conclusion are not
really optimistic, the performance of the process is much better when applied in practice. Also,
we applied this scheme on a one-dimensional example. The algorithm can thus be more efficient

on a more complex function because unlike the gradient method, we also take care of the Hessian.

——y-method

10° - - - Fixed-step gradient method }{
w
6
5107 e i
] S
- ~
= S
3 RARON
< S~o
10°F RN i
10°k ! ! L L ! N
0.5 1 15 2 25 3
Iteration % 10*

Figure 7.1: Comparison of the convergence between the gradient method and the ~y-method
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Figure 7.2: Relative step size of the y-method compared to the fixed step gradient method.

The main drawback of this scheme is minimizing m,(y): computing the next iterate xji; is
harder than a simple gradient step, but as we have seen before, the gradient step can be very
close to the y-method step: we can thus use it as a good initial point for an iterative method
which minimizes m,(y). We will thus see two variants of this method where the next iterate is

simpler to compute.
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7.3 The v-method with non-optimal direction

We have seen before that minimizing m.(y) can be difficult. The real difficulty is in fact the
computation of the optimal direction. But when the direction is fixed the problem is much eas-

ier, and we can have an explicit formula for the optimal norm associated to a direction.

Let us write the step s = au, where @ = +||s|| and u = Eper- In this case both s and au are
equivalent. Suppose that « is very big such that v, (z + cu) < 1. Indeed,
(f"@u,u)® (7 (@)u, u)®

f(x—i—s)Sf(m)+a<f’(az),u>+ga2+a3L< 6lad T 21242 )

Suppose now that wu is fixed. The first optimality condition is

(" (@)u, u)?

=0.
2L

<f,(x)vu> toa—

We can thus find the optimal norm of a given direction:

L L ({@uw?
o =— <2L —(f ($)7U>> : (7.2)

We thus see that the optimal norm is given by something proportional to the norm of the gradient
plus a flat amount which depends of a value defined by the matrix f”(x).
We can apply this formula with the gradient direction. The direction is u = —% while the

optimal norm is

1 ”CL‘ISC,/.’EQ ,
a*za<“<ﬁj}&ﬁf)>+ufuw)-

If write the full step,

o (@) @), f(@))? ,
“—‘a< ROIE '”)f”*

we can easily see that the improved step is in fact the old step —% /' (x) plus a "constant" which
depends only of the direction of the steepest descend. Therefore, when we are far from the
optimum, ||f’'(z)|| will be very big, and the optimal norm will tend to the norm of the gradient

step.

7.4 Minimizing the relaxation of the y-model: the #-method

We have seen before that minimizing the y-model is hard, and we have also seen that when we
fixed a direction then we can compute easily the associated optimal norm. We will thus see here

a new method which consists in minimizing a model which is very similar to the y-model, the
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f-model (see (4.8)):

— 3
nm@>=fmwwfmxy—@+;«ﬂuwy—xxy—@+LM—xw(Q*W“Q9“”>+@%”>.

Suppose now that 6,(y) < 1. The new iterate xj,1 is thus equal to

(Gx(y)(12—9z(y)))} '

Tyl = argmin (f'(x),y —x)+ % (f"(z)(y —z),y — x) + Lljy — z|

because 63(y)||y — ||® is in fact constant, like f(x). Also, the model need 3 parameters in theory,
but in practice we just need to estimate L and (o — p), so we do not have more parameters than

before. Note that the #-model is convex by construction.

7.4.1 Minimizing the model

We will now use another model which implies 0, (y) instead of v, (y):

B | g (e @) - 2.y - )
baly) = {1’mw—ﬂ& © ) =min {1 Ly — 2| }

The difference between the two is the lower-approximation of f”(z) by puI. The main advantage
is to avoid a dependence with the direction y — x and the value of 6,(y). By consequence the

first-order condition when 6, (y) < 1 is much simpler than for the y-method:

,mm+¢%m@—xwwa—mw—xwfogﬁ2@:iﬂ=& (7.3)
Now, denote y — x by au where |lu| = 1. We have thus
(@) + af’(z)u+ aloc — p)u — (J;L'M)Qu = 0. (7.4)

Let us write « in function of «:

o—w? \ o—
u=- (a [f"(x) + (0 — wI] — (2L'u)l> (@), Jul=1, a> LM (& 0y (z+au) <1).

We thus need to find the right a such that the norm of u is equal to one. We can find the solution
to this equation with a binary search algorithm (where at each step we solve a linear system of
n variables). We will prove that the norm of the right-hand-side of the equation decreases when
a becomes larger. Let

2

A=f"(z)+ (@ —wI, o= ((TQ_LM)I.

Let us use the SVD algorithm on A. Since A is square and symmetric, the SVD of A is USUT,
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where UTU = UUT = I and ¥ is diagonal. Indeed,
-1
u=—(aUsU” = UU") " f(x) = U (aX - ) U f(a).

Let us call v = UT f/(x). We have thus

= fam — )0l = 30 ()

—\aog;—c

It is now clear that ||u|| decreases when we increase a. We can thus use the binary search algorithm
to solve the intermediate minimization problem (or any variant, like the secant method, which
is faster): If the norm of u is below one, then we need to increase «, and if the norm of u is too

large then we need to decrease a. Let us now prove that, for all ¢, we have
ao; —c > 0. (75)
Let us first have a lower bound on ¢;, the singular values of A. Indeed,

A= f"(z)+(c — )l = ol = 0; > 0.

Since we forced a to be larger than Z£, the product ao; is bounded as follow:
o— U o; 20
ao; >0 = > > 2,
c o— i

leading to the fact that (7.5) is true.

We have already a lower-bound for «, but we need also an upper bound «a,; in order to run the

binary-search. We will now compute an upper-bound using (7.4). Indeed,

(0 —p)?*

all f @+ (o = pull < |F' (@) + =5

Since f”(x) »= pl, we have

qm

(0 — p)?
(Hf( )H+2L>-

We can thus now write explicitly our specific binary-search algorithm to find the minimum of the
f#—model.

Initialization : Let a; = 2 and ayp = % (Hf ()] + (o “) )
While a,; — oy, >tol:

o—p)? -1
1. Compute e = “5% and u = — (oc [f"(x) + (o0 — )] — %I) 1(z).

2. If |Jul| > 1, then agp = apew- Else, ayp = new-
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Note that in this section we have considered the binary search algorithm, but the secant method

(or the Newton’s method) can be also used for better performances.

7.4.2 Complexity analysis

We will now analyze the complexity of the -method. There is no a priori reason of having a
method which is better than the gradient method, so we will compare at the end the maximum
number of iterations of the two algorithms. We will suppose that we are far from the solution, so
that 6(y) < 1. Let us take (7.3) and call yg the solution of this equation. Indeed, if we use (4.7),

1)l = 1) = 7'@) = (7" @)oo = ) = (1= 2220 (o — (o = )]
<17 0) = £@) — (@ =2+ (1= 222 (0 = )l — 2]

2
2
< Lilyo - 2|2 (em@e) - W) + (1= 20 (o — o —

2 2
= Ly — /> (202 (o) — 62(w0)) .

If we replace 6, (yp) in the last inequality, we can deduce

!{0(3"2; + UQ_L“ < llyo — | (7.6)

Also, we can use one more time (7.3) multiplied by yp — x:

_ /el _ " . . _M 8
0= (f'(@),yp =)+ {f"(2)(yo — )99 — @) + | bx(y) — =57 | Llly — =]*, (7.7)

This result can be injected in (4.8) by replacing (f’(x),yg — x). Therefore,

(7.8)

3
F(&) = Fln) = = (F"(2) (o — ), 90 — =) + Ll — (9“299) - Mgf“) |

. 3 .
Since for all z € [0, 1] we have 2—2- > 1z and because f”(z) is strongly convex, we can transform

the inequality (7.8) into something very similar to (3.12).

© 0z (yo) L o u
£ = 1) 2 Bl = 1P + 2Ly = (248 g - .

We can now use (7.6) on this inequality to get

o)t = (§+ 1) (Lol o 20y (79)

We can see in this relation two very interesting things. The first one is the constant term: at
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each iteration, the model will decrease of at least

(g - g) <J2_LM>2'

It is due to the fact that we need to be far enough from the optimal point. The second thing is

that the decrease is proportional to the square of || f/(x)]|, like in the gradient method. We can

thus expect a linear rate of convergence for this method.

Now, we will drop the constant term in (7.9), and we will replace || f'(z)|| using (2.4). Therefore,

H o MK
Op —O0pp1 > ————= [ =+ = | dpp1.
k= Ok+1 = 20 — 12 <3 + 6) k+1
For more convenience we will call G the constant in the right hand side of the above inequality.
We can now deduce the rate of convergence of the method:

1
O <

< k5.
< 1+G5k—1_(1+G) do

Suppose we want to reach € > 0 not too small, the following condition is thus sufficient
e G5 < e.
The number of iterations ky,.x is finally bounded by
kmax < Glog 580.

We have here, as expected, a linear rate of convergence. This method can thus be used in the

first phase of the minimization process.

7.4.3 Comparison with the quadratic model

In this section we will compare the #-model with the quadratic model used by the gradient
method. We are interested in a condition on y or the norm of y — = such that my(y) < ma(y)

when 60, (y) < 1. After the expansion of 6,(y) we find

L (0 —p)? (0 —p)®

- —(y — S S 7 PP A A}

(@) - - )y - =)~ Ty g O <
(Lf"(x) = plu,w)

Suppose that y — x = au and the direction wu is fixed. Let us call £ = the relative

o—p
error of the approximation of f”(z) by uI and A = ZZ£. Then we can find a condition on « :

A / 4
< =11 1— - .
a—g<+ 35>

If the error £ is too big, then we do not have a solution to the second order equation, meaning
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that the #-model will be in this case strictly above the quadratic model. To avoid this fact, we

should have p as big as possible and ¢ close to p.

This condition also tells us that the #-method is worse that the gradient method when we are
very far from the optimum. The method becomes efficient more or less at the same time when
the v-method becomes much faster than the gradient. However, the #-method can be used to
compute another direction, different from the gradient, which can be used in combination with
the y—method with fixed direction.

7.5 Conclusion

In this chapter, we have seen several methods, with their own benefits and drawbacks. The
common and main problem of all previous methods is the presence of two parameters (L and o

or L and (0 — p)) in the model needed to compute the next iterate.

The y—method is the best algorithm in term of maximum number of iterations. However, the
subproblem is hard to minimize because its structure is quite complex. However, when the di-
rection is fixed, everything becomes much easier and we can have the expression of the optimal

norm (i.e. the value of the norm which minimizes the y-model) associated to any direction.

We have also analysed the 8—method, much easier to compute. This scheme is finally not as good
as expected, because of its only local efficiency (when we are far, the gradient method is better,
and when we are too close we have to switch to the CNM method). The scheme is more useful
when used to compute a direction, because we can adapt the norm with the y-model. However

in this case we will need 3 parameters, because o appears alone in the v-model.

Finally, assuming that all parameters are known, the best method which makes a compromise
between the difficulty of the resolution of the sub-problem and the total complexity should be an
hybrid method using the expression of the optimal norm, which choose the best step between the
direction given by the gradient or by the §-method. This new hybrid scheme is by construction
more efficient than the old one but slower than the ~-method in term of number of iterations.
For all previous methods the number of parameters can be a real difficulty when used in an
adaptive algorithm. We will thus see in the next section a new algorithm which will use only one

parameter.

o1






CHAPTER &

Using line-search on the parameter L:
adaptive CNM

8.1 Motivations

In the previous sections we have seen methods which need more than one parameter, like the
hybrid method of the y-method. However, the two algorithms works at least as good as the
gradient. They are all based on a local cubic and global quadratic upper-approximation of the

function f € S, 1.

We have seen that the CNM works bad on f € S(’i ; because the method is too conservative. We
will thus now change the strategy for this class: we will use only the cubic model (2.12) used by
the CNM but this time we will try to find a smaller L at each iteration. The consequence of this
choice is that the model will not be a global upper-approximation anymore, but we will try to

keep the inequality at xx1 to ensure a certain decrease.

8.2 Intuition: A smaller L for a larger step size

The main reason of using a line-search on the parameter L instead of the norm of the step (y — )
is because the direction will also change, leading to a better theoretical decreasing. However by

changing L, the norm of the step will also be modified.

We will see here the link between the parameter L and the norm of the step (y — x). Indeed, by
using the cubic model (3.2), we can deduce the step (y — x) by an implicit way. Let us denote
s=T—xand r = ||T — z||. We have thus

-1

5=— (f”(:c) + [gI) I'(z).

We cannot say that Lr is a constant, because we have to follow ||s|| = r. We will thus one more
time use the SVD of f”(x) = USUT because f”(z) is symmetric. We can thus rewrite the step

5= — (UEUT + UUTL;)_l flx)=-U (2 + L;I>_1 UTf'(x).
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Let us call UT f/(z) = v. We have thus

I zfj( )

.4 L
i—1 \0i T 37

Finally, using the fact that [|s||? = 72,

n 2
(7
1= — | .
We can see with this equation that a decrease of L must be compensated by an increase of the

norm of the step s. We can also see that the impact of the decrease of L is more important when

the singular values of f”(x) are small.

8.3 The line-search algorithm

In this section we will present the line-search algorithm itself. Our goal is to find one good value
L under the condition

F(Tg(2)) < ma(w; L)
where ms(z; L) is the cubic model used with another value of L. The subroutine is described

below.

Subroutine: Line search on pa