
Master thesis in non-linear optimization

Global Complexity Analysis For The
Second-Order Methods

by

Scieur Damien

Advisor: Y. Nesterov

Readers: P.-A. Absil
F. Glineur

June 2015
Louvain-la-Neuve

Acknowledgements

I want sincerely to thank:

My supervisor, Yurii Nesterov,
for his support and advices,

My friends Mathieu Dath and Léopold Cambier,
for reading my master thesis,

And of course all people who support me.

III

Contents

Acknowledgements . III

Contents . V

Introduction . 1

1 Definitions and notations . 3
1.1 General . 3
1.2 Convex and strongly convex functions . 4
1.3 Lipschitz-continuous functions . 4
1.4 Performance of a scheme . 4
1.5 Rate of convergence . 5

2 Main inequalities . 7
2.1 Strongly convex functions . 7
2.2 Functions with Lipschitz-continuous gradient . 9
2.3 Functions with Lipschitz-continuous Hessian . 10

3 Cubic regularization of the Newton’s Method (CNM) 13
3.1 Regular algorithm . 13
3.2 Minimal decreasing . 15
3.3 Accelerated algorithm . 16

4 Properties of the intersection of functional classes 17
4.1 Functions with Lipschitz-continuous gradient and Hessian 17
4.2 Strongly convex functions with Lipschitz-continuous Hessian 20
4.3 Strongly convex functions with Lipschitz-continuous gradient and Hessian 21
4.4 Relaxation of the bounds for Sµσ,L . 22

5 CNM applied to strongly convex functions . 23
5.1 Impact of the strong convexity assumption . 23
5.2 Stopping criterion . 24
5.3 Global complexity . 25

5.3.1 First stage of the minimization process . 25
5.3.2 Super-linear and quadratic rate of convergence 27
5.3.3 Bound on the total number of iterations . 29

V

CONTENTS

5.4 Examples where CNM works bad . 30
5.4.1 Intuitive example : smooth approximation of absolute value 30
5.4.2 One-dimensional quadratic function . 31

6 Combining gradient method and CNM: the hybrid scheme 35
6.1 Differences between the gradient method and CNM 35
6.2 Complexity analysis . 36

6.2.1 Global complexity for convex functions . 37
6.2.2 Global complexity for strongly convex functions 39

6.3 Conclusion . 42

7 Minimizing a more accurate model: the γ-method 43
7.1 Motivations . 43
7.2 Complexity analysis . 44
7.3 The γ-method with non-optimal direction . 46
7.4 Minimizing the relaxation of the γ-model: the θ-method 46

7.4.1 Minimizing the model . 47
7.4.2 Complexity analysis . 49
7.4.3 Comparison with the quadratic model . 50

7.5 Conclusion . 51

8 Using line-search on the parameter L: adaptive CNM 53
8.1 Motivations . 53
8.2 Intuition: A smaller L for a larger step size . 53
8.3 The line-search algorithm . 54
8.4 Complexity analysis . 55
8.5 Discussion . 56

Conclusion . 57

Bibliography . 59

VI

Introduction

In many fields of sciences and engineering, we often need to minimize (or maximize) a function
f . There exists a lot of different kinds of optimization programs, for example combinatorial
optimization. In this master thesis, we will be interested in unconstrained optimization of a
multivariate function

min
x∈Rn

f(x)

where f(x) is twice differentiable. There exists a lot of algorithms which try to minimize such
functions, for example the gradient scheme:

xk+1 = xk − αkf ′(xk)

for some step size αk > 0. It is one of the most common and known scheme. This algorithm,
quite simple, is quite natural: we just follow the direction of the steepest descend. However, We
do not use the second order information, i.e. the Hessian of the function. One other very famous
scheme is the Newton method:

xk+1 = xk − [f ′′(x)]−1f ′(x)

The main property of this algorithm is its capacity to converge faster (under some conditions)
when we are close to the optimum. However, the scheme has several drawbacks: the inverse of the
Hessian is not always well-defined, and we do not have any guarantee on the global convergence
of the algorithm.

In paper [5] was proposed a cubic regularisation of the Newton’s method. The procedure is to
minimize a cubic global upper-estimation of function f at each iteration. With this trick, the
step xk+1 − xk will always be well defined, and we can estimate the global rate convergence.

The goal of this master thesis will be firstly to analyze with precision the behavior of this new
algorithm on strongly convex functions. During this analysis we will find that the regularisa-
tion does not work as well as expected on smooth functions, unlike the gradient method. We will
thus propose some variants of the original algorithm in order to have better global performances.

1

Chapter 1
Definitions and notations

1.1 General

We suppose that we work in the space Rn. The inner product 〈·, ·〉 : Rn × Rn 7→ R between two
vectors v, w ∈ Rn is

〈v, w〉 =
n∑
i=1

viwi.

We can thus define the norm ‖·‖M for a vector v whereM is a symmetric positive definite matrix:

‖v‖M =
√
〈Mv, v〉 =

√
〈v,Mv〉

We will also use the Euclidean norm ‖ · ‖2 = ‖ · ‖I , where I is the identity matrix. For more
convenience, the notation ‖ · ‖ will be used for this norm.

The norm of a square symmetric matrix M can be defined as

‖M‖ = ‖M‖2 = max
v

| 〈Mv, v〉 |
‖v‖2

= σ1

where σi are the singular values of matrix M , indexed by decreasing order.

A square matrix M is called positive semi-definite, or M � 0, if and only if all eigenvalues λi are
non-negatives. For two matrices A and B, the notation A � B means that the matrix (A − B)
is positive semi-definite.

In this master thesis, we work with twice-differentiable functions f : Rn 7→ R, x 7→ f(x). The
gradient f ′(x) of these functions belongs to Rn and the Hessian belongs to Rn×n. If a function f
is twice differentiable and defined all over Rn, we say that f ∈ S:

f ∈ S ⇔ f : Rn 7→ R, x 7→ f(x) and f ′(x), f ′′(x) exist on Rn.

Since the main topic of this master thesis is optimization, we are interested in the minimal value
of function f , called f∗. This value is reached at some point x∗. We have thus the relations

f∗ = min
x
f = f(x∗)

3

CHAPTER 1. DEFINITIONS AND NOTATIONS

and
x∗ ∈ arg min

x
f

If we suppose that f has one and only one global minimum x∗ then the notation x∗ = arg minx f
will be used. Moreover, if the function f is differentiable, we have ‖f ′(x∗)‖ = 0.

1.2 Convex and strongly convex functions

A twice differentiable function f is called convex (resp. strongly convex with constant µ ∈ R+
0)

if and only if for any x in dom f we have f ′′(x) � 0 (resp. f ′′(x) � µI). For such functions, we
say f ∈ S0 (resp. f ∈ Sµ).

1.3 Lipschitz-continuous functions

A function f is called Lipschitz-continuous of constant l if and only if for all x, y we have

|f(x)− f(y)| ≤ l‖x− y‖2

where l is a positive constant.

If f is twice-differentiable and has a Lipschitz continuous gradient of constant σ then we say
f ∈ Sσ. If f is twice-differentiable and has a Lipschitz continuous Hessian of constant L then
we say f ∈ S∞,L. Indeed, if the function has Lipschitz-continuous gradient and Hessian then
f ∈ Sσ,L.

1.4 Performance of a scheme

In this paper, we will build some algorithms in order to find an approximation of the minimum
of a function, i.e. we want to find f(x) s.t.

f(x)− f∗ ≤ ε

where ε, the accuracy of the approximation, is a real positive value. Any x satisfying this condi-
tion is called ε-solution of the problem. The way used to find this approximation (in our case)
consists in building an sequence xk and f(xk) s.t. f(xk+1) ≤ f(xk) and when k → ∞ then
f(xk) → f∗. For our purpose, it is more convenient to use the notation δk = f(xk)− f∗. When
the minimum is unique, then the notation ∆k = xk − x∗ can be also used.

Indeed, the number of intermediate points xk depend also of the quality of the initial point
x0. We will use two different measures of quality of the initial value. The first one is very
intuitive and is δ0. The second one is about the distance ‖x0 − x∗‖. Let us define the level set

4

CHAPTER 1. DEFINITIONS AND NOTATIONS

D = {x : f(x) ≤ f(x0)} and suppose that D is bounded. Then we can define the diameter of this
set D :

D = max
x,y∈D

‖x− y‖

This value is very important because it is often used in the analysis of the performances of our
algorithms.

We will also have to analyse the performance of a scheme as a function of accuracy ε, δ0 and
D. There exists some other measures of performance, but the only one that we will use is very
common. It is the worst-case bound in terms of the number of calls of oracle (i.e. computing
f(x), f ′(x) and f ′′(x)). The main advantage of this point of view is that we can have a guarantee
about the maximal number of iterations. But the main drawback is that we cannot deduce the
average number of iterations. For example, the Simplex algorithm requires at most an exponen-
tial number of iterations to reach the desired solution, but in practice this algorithm converges
very quickly.

Sometimes we will also compare different schemes and try to determine which one is the best.
We will say that one scheme is better than another when the maximal number of iterations kmax

of the first one is better than the maximal number of iterations kmax of the second for any value
of ε, δ0 and D.

1.5 Rate of convergence

In this report, we will describe the rate of convergence of different schemes. For example, we will
say that a scheme has a linear rate of convergence when

δk+1 ≤
1

1 + c
δk

for a positive constant c (often not very large). This constant c must be independent of δ0 and
D. In this case the maximal number of iterations of the scheme in function of D and ε can be
computed. Suppose we want δk ≤ ε ; then the condition

(1
1 + c

)k
δ0 ≤ ε

is sufficient. However, since c is not very large, we can use the following relation

1
1 + c

≤ e−c

to have a better interpretation of the final result. We have now the stronger condition e−ckδ0 ≤ ε
and kmax can be easily deduced:

kmax = 1
c

log
(
δ0
ε

)
. (1.1)

5

CHAPTER 1. DEFINITIONS AND NOTATIONS

This rate of convergence is very fast : for example if we want to have a one hundred time more
accurate solution then we need log(100)/c more iterations. Any multiplication in the accuracy or
the quality in the initial point intervene in a additive way in the number of iterations (because
of the logarithm).

There also exists some faster rates of convergence. For example, the well-known Newton method
has a quadratic rate of convergence when the initial point is close enough to the optimal solution
(under some assumptions). We will say that a scheme has a quadratic rate of convergence when

δk+1 ≤
1
c
δ2
k.

for c a real positive value. Let us write an intermediate value αk = 1
c δk. Indeed, we have

αk+1 ≤ α2
k and a sufficient condition to have an ε solution is

α2k
0 ≤

ε

c
.

We see here that we need α0 < 1, or δk ≤ c, to have a guarantee of convergence. Now we can
easily deduce the maximum number of iterations kmax:

kmax = log2

[log(ε/c)
log(δ0/c)

]
.

Between these two rates of convergence there exists so-called super-linear rate of convergence:

kmax = logκ
[log(ε/c1)

log(δ0/c2)

]
, (1.2)

where κ is between one and two for some constants c1 and c2. Last but not least, there also
exists a rate of convergence called sub-linear. This rate is slower than the linear one, and takes
sometimes the form

δk ≤
δ0
p(k) (1.3)

where p(k) is a polynomial function in k. To compute the maximum number of iterations we
need to solve

p(kmax) = δ0
ε
.

6

Chapter 2
Main inequalities

In this chapter we introduce all necessary results related to strongly convex functions, functions
with Lipschitz-continuous gradient and Lipschitz-continuous Hessian. The majority of the results
of this chapter can be found in the book [4].

2.1 Strongly convex functions

There exists a well-known property coming from convex function : when we found a local min-
imum in a convex function, then we are sure that this minimum is global. However, we cannot
be sure that a minimum exists and is unique. But for all strongly convex functions there always
exists one minimum, which is indeed unique.

Moreover, this class ensures that the Hessian of the function is non-degenerate because if f ∈ Sµ

then
f ′′(x) � µI, µ > 0,

which means that the Hessian is positive definite everywhere. With this information we will be
able to build some algorithms which have a good rate of convergence to the global minimum. For
example, there exists a constant step size gradient method which has a linear rate of convergence
to the global minimum of such functions.

Note that the definition of strongly convex functions can be extended to differentiable functions.
If the following inequality is satisfied for any x, y

f(y)− f(x)−
〈
f ′(x), y − x

〉
≥ µ

2 ‖y − x‖
2 (2.1)

then f is strongly convex. There exists a geometric interpretation of this result: for any point
x there exists a quadratic function which supports the function f . This property is very useful
when evaluated at the optimum. Since f ′(x∗) = 0,

f(x)− f(x∗) ≥ µ

2 ‖x− x
∗‖2 (2.2)

which gives us a relation between the accuracy of the value of the function and the proximity of
x to the solution.

7

CHAPTER 2. MAIN INEQUALITIES

There exists a lot of very interesting inequalities for strongly convex functions but we will very
often use the following theorem.

Theorem 2.1.1. Suppose f ∈ Sµ. For any x, y ∈ Rn we have

f(y)− f(x)−
〈
f ′(x), y − x

〉
≤ 1

2µ‖f
′(x)− f ′(y)‖2 (2.3)

Proof: At first, suppose x is fixed. Then we can build a function φ(y) :

φ(y) = f(y)−
〈
f ′(x), y

〉
.

By construction, φ ∈ Sµ. Because φ′(x) = 0, we deduce that x minimize φ(y). If we use also
(2.1) we get the following relation

φ(x) = min
z
φ(z) ≥ min

z

[
φ(y) +

〈
φ′(y), z − y

〉
+ µ

2 ‖z − y‖
2
]
∀y.

We can solve this minimization problem using the first optimality condition

φ′(y) + µ(z − y) = 0 ⇒ z = y − φ′(y)
µ

.

By consequence,
φ(x) ≥ φ(y)− 1

2µ‖φ
′(y)‖2.

Since this development is valid for any x, it is exactly (2.3).

A very useful result using this theorem is when we use (2.3) at the optimum x∗ :

f(x)− f(x∗) ≤ 1
2µ‖f

′(x)‖2 (2.4)

because it gives us a very useful relation between the gradient of the function at x and the error
at point x.

Last but not least, there exists one other property which comes directly from convexity. For such
functions it is well-known that the tangent of the function at point x is a global lower-bound for
the whole function f :

f(y) ≥ f(x) +
〈
f ′(x), y − x

〉
.

We can thus write
f(x)− f(y) ≤ ‖f ′(x)‖ ‖y − x‖.

This property will be more useful for us when applied at the optimum:

f(x)− f(x∗) ≤ ‖f ′(x)‖ ‖x− x∗‖. (2.5)

8

CHAPTER 2. MAIN INEQUALITIES

2.2 Functions with Lipschitz-continuous gradient

This assumption is like the "dual" of strongly convex functions. The eigenvalues of the Hessian
have a positive lower bound, while the ones of functions with Lipschitz-continuous gradient are
bounded above by a positive constant σ. It means that for any f ∈ Sσ we have

‖f ′(y)− f ′(x)‖ ≤ σ‖y − x‖ and f ′′(x) � σI (2.6)

Knowing that a function has a Lipschitz-continuous gradient (also called smooth functions) is
very helpful: the graph of such function is between two quadratic functions1.

Theorem 2.2.1. Suppose f ∈ Sσ. For any x, y ∈ Rn we have

|f(y)− f(x)−
〈
f ′(x), y − x

〉
| ≤ σ

2 ‖y − x‖
2. (2.7)

Proof: For any x, y we have

f(y) = f(x) +
ˆ 1

0

〈
f ′(x+ τ(y − x)), y − x

〉
dτ

= f(x) +
〈
f ′(x), y − x

〉
+
ˆ 1

0

〈
f ′(x+ τ(y − x))− f ′(x), y − x

〉
dτ.

Therefore, using the definition of Lipschitz-continuous gradient,

|f(y)− f(x) +
〈
f ′(x), y − x

〉
| =

∣∣∣∣∣
ˆ 1

0

〈
f ′(x+ τ(y − x))− f ′(x), y − x

〉
dτ
∣∣∣∣∣

≤
ˆ 1

0
‖f ′(x+ τ(y − x))− f ′(x)‖‖y − x‖dτ

≤ σ‖y − x‖2
ˆ 1

0
τdτ

= σ

2 ‖y − x‖
2.

With (2.7) we can prove a result which is very similar to (2.4).

Theorem 2.2.2. Suppose f ∈ Sσ. For any x, y ∈ Rn we have

f(x) +
〈
f ′(x), y − x

〉
+ 1

2σ‖f
′(x)− f ′(y)‖2 ≤ f(y). (2.8)

We can use this inequality at the point x∗:

f(x)− f(x∗) ≥ 1
2σ‖f

′(x)‖2. (2.9)

1In this case the quadratic lower bound is concave, unlike strongly convex functions.

9

CHAPTER 2. MAIN INEQUALITIES

Proof: The proof is very similar to (2.3). Let us fix some x ∈ Rn and consider the function

φ(y) = f(y)−
〈
f ′(x), y

〉
.

Using (2.7) we have
φ(y∗) ≤ φ

(
y − 1

σ
φ′(y)

)
≤ φ(y)− 1

2σ‖φ
′(y)‖2,

and it is exactly (2.8)

Smooth functions are very good for first-order methods. For example, there exists a fixed-step
gradient method for such functions which converges to a point which is not a maximum s.t. the
gradient at this point is zero. The intuition behind this condition is the following: if we ask for
the values f(x) and f ′(x), then these values will be very close to the ones at x + ε where ‖ε‖ is
small:

f(x)−
〈
f ′(x), ε

〉
−O(‖ε‖2) ≤ f(x+ ε) ≤ f(x) +

〈
f ′(x), ε

〉
+O(‖ε‖2)

‖f ′(x)− f ′(x+ ε)‖ ≤ σ‖ε‖.

In other words, we want a function which is robust over the impact of the argument x.

2.3 Functions with Lipschitz-continuous Hessian

Like above, we will make another assumption over the robustness of the function. Since we are
interested in second order methods, we want functions for which the variation of the Hessian is
bounded:

‖f ′′(y)− f ′′(x)‖ ≤ L‖y − x‖. (2.10)

We will thus assume that f ∈ S∞,L. We can integrate two times the above condition, leading to
two very interesting inequalities.

Theorem 2.3.1. Suppose f ∈ S∞,L. Then for any x, y we have

‖f ′(y)− f ′(x)− f ′′(x)(y − x)‖ ≤ 1
2L‖y − x‖

2. (2.11)∣∣∣∣f(y)− f(x)−
〈
f ′(x), y − x

〉
− 1

2
〈
f ′′(x)(y − x), y − x

〉∣∣∣∣ ≤ 1
6L‖y − x‖

3. (2.12)

Proof: Indeed,

‖f ′(y)− f ′(x)− f ′′(x)(y − x)‖ =
∥∥∥∥∥
ˆ 1

0
[f ′′(x+ τ(y − x))− f ′′(x)](y − x)dτ

∥∥∥∥∥
≤ ‖y − x‖

ˆ 1

0

∥∥[f ′′(x+ τ(y − x))− f ′′(x)]
∥∥dτ

≤ L‖y − x‖2
ˆ 1

0
τdτ

= L

2 ‖y − x‖
2.

10

CHAPTER 2. MAIN INEQUALITIES

It is exactly (2.11). With a similar idea,∣∣∣∣f(y)− f(x)−
〈
f ′(x), y − x

〉
− 1

2
〈
f ′′(x)(y − x), y − x

〉∣∣∣∣
=
∣∣∣∣∣
ˆ 1

0

〈
f ′(x+ τ(y − x))− f ′(x)− τf ′′(x)(y − x), y − x

〉
dτ
∣∣∣∣∣

≤ ‖y − x‖
ˆ 1

0
‖f ′(x+ τ(y − x))− f ′(x)− τf ′′(x)(y − x)‖dτ.

We can now use (2.11), leading to (2.12).

11

Chapter 3
Cubic regularization of the Newton’s
Method (CNM)

We present now an algorithm (presented in [5]) used for minimizing unconstrained functions with
Lipschitz-continuous Hessian. This algorithm is an improvement of the Newton’s method, be-
cause this scheme converges everywhere in the domain and is always well-defined.

This new second-order scheme, the cubic regularisation of the Newton’s method (CNM), minimizes
a cubic model at each step. This cubic model is a global upper estimation of the objective function.
By analyzing the decreasing of this cubic model, we will be able to deduce the rate of convergence
of the algorithm.

3.1 Regular algorithm

The idea of the CNM is to minimize the cubic model (2.12). By minimizing this expression, we
are sure that the next iterate xk+1 satisfies

f(xk+1) ≤ f(xk).

Let us introduce the following mapping :

TM (x) ∈ argmin
y∈E

f(x) +
〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
+ M

6 ‖y − x‖
3. (3.1)

Where M ≥ L is a positive parameter.

It is important to note that TM (x) is the solution of the following system of equations

f ′(x) + f ′′(x)(TM (x)− x) + 1
2M‖TM (x)− x‖ · (TM (x)− x) = 0. (3.2)

The basic algorithm is to choose xk+1 = TM (xk). In the rest of this report we assume thatM = L

and TL(x) = T for more simplicity.

From the first optimality condition (3.2) we can derive the rate of convergence (more detail in
[5]):

min
k
‖f ′(xk)‖ ≤ O

(
δ0
k

)2/3

If we suppose f convex, we can have a better result.

13

CHAPTER 3. CUBIC REGULARIZATION OF THE NEWTON’S METHOD (CNM)

Theorem 3.1.1. Suppose that f is convex and has a non-empty set of global minimum X∗. Also,
suppose that the value D (recall: the radius of the level set {x : f(x) ≤ f(x0)}) is finite. Then,

• If δ0 >
3
2LD

3 we have

f(x1)− f(x∗) ≤ 1
2LD

3. (3.3)

• If δ0 ≤ 3
2LD

3 we have

f(xk)− f(x∗) ≤ 9LD3

(k + 4)2 . (3.4)

We will admit this theorem without proof. The complete development can be found in [2].

This theorem means that the method convergences to a global minimum. We see also that the
rate of convergence is polynomial. Let us estimate the number of iterations to reach a precision
ε. For that we need to solve the following sufficient condition,

9LD3

(k + 4)2 ≤ ε,

and we can thus find an estimation on the maximum number of iterations:

k ≤

√
9LD3

ε
− 4 ≤

√
9LD3

ε
. (3.5)

Moreover, if we assume that the set of optimal points is globally non-degenerate with parameter
µ > 0 (i.e. (2.1) holds for x = x∗ and for any y) then we can prove a better local result.

Theorem 3.1.2. Suppose that f(x) is convex and admits a globally non-degenerate optimal set.
Then

1. If f(x0)− f(x∗) ≥
(

2
3L

)2 (µ
2
)3 = ω̄ the process converge at the following rate.

δ
1/4
k ≤ δ1/4

0 − k

6 ω̄
1/4 (3.6)

2. If f(x0)− f(x∗) ≤ ω̄ then the convergence becomes super-linear.

δk+1 ≤
√

1
9ω̄ δ

3/2
k (3.7)

The complete development can be found in [5].

We will try to deduce using expression (3.6) the maximum number of iterations needed from δ0

to ω̄. Indeed, we need to satisfy this condition to ensure δk ≤ ω̄:

δ
1/4
0 − k

6 ω̄
1/4 ≤ ω̄1/4.

14

CHAPTER 3. CUBIC REGULARIZATION OF THE NEWTON’S METHOD (CNM)

Thus, we find an estimation of the maximal number of iterations:

k ≤ 6
([

δ0
ω̄

]1/4
− 1

)
≤ 6

[
δ0
ω̄

]1/4
. (3.8)

We will now try to find the switching value ζ on δk which minimizes the total number of iterations
using the combination of (3.5) and (3.8):

ζ = arg min
x

√
9LD3

x
+ 6

[
x

ω̄

]1/4
.

The first optimality condition is

−
√

9LD3

2 ζ−3/2 + 6
4ω̄1/4 ζ

−3/4 = 0.

Assuming ζ 6= 0 we find

ζ =
(
ω̄1/4
√
LD3

)4/3
= µD2

181/3 .

The number of iterations needed for going to ε = ω̄ is thus bounded by

9 · 181/6
√
LD

µ
≤ 14.6

√
LD

µ
. (3.9)

After this phase, the scheme converge with a super-linear rate of convergence. We will wait a
little bit before making the precise upper bound, because we will see later better results when we
add the strong convexity assumption.

3.2 Minimal decreasing

Let us will analyse the minimal decrease between two iterations of CNM. Using the first order
optimality condition (3.2):

‖f ′(T)‖ =
∥∥∥∥f ′(T)− f ′(x)− f ′′(x)(T − x)− L

2 ‖T − x‖(T − x)
∥∥∥∥ .

If we use now (2.11) we get (using M = L):

‖f ′(T)‖ ≤ L‖T − x‖2. (3.10)

Now consider again (3.2) and multiply it by (T −x). It becomes (recall that we supposedM = L)

〈
f ′(x), T − x

〉
= −

〈
f ′′(x)(T − x), T − x

〉
− 1

2L‖T − x‖
3. (3.11)

15

CHAPTER 3. CUBIC REGULARIZATION OF THE NEWTON’S METHOD (CNM)

Using (2.12) with y = T in combination with (3.11) we get

f(T) ≤ f(x) +
〈
f ′(x), T − x

〉
+ 1

2
〈
f ′′(x)(T − x), T − x

〉
+ L

6 ‖T − x‖
3

= f(x)− 1
2
〈
f ′′(x)(T − x), T − x

〉
− L

3 ‖T − x‖
3,

wich leads us to an expression of the minimal decreasing f(x)− f(T):

f(x)− f(T) ≥ 1
2
〈
f ′′(x)(T − x), T − x

〉
+ L

3 ‖T − x‖
3. (3.12)

We can also use (3.10) in this equation to get a relation between the decreasing and the gradient
at the point T .

3.3 Accelerated algorithm

By using some appropriate estimate sequences, the algorithm can be improved for convex func-
tions. All details can be found in [2].

Initialization : Choose x0 ∈ E. Set M = 2L and N = 12L. Compute x1 = TL(x) and define
ψ1(x) = f(x1) + N

6 ‖x− x0‖3.
Iteration k ≥ 1 :

1. Compute vk = argmin
x
ψ(x) and choose yk = k

k+3xk + 3
k+3vk

2. Compute xk+1 = TM (yk) and update

ψk+1 = ψk + (k + 1)(k + 2)
2 [f(xk+1) +

〈
f ′(xk+1, x− xk+1

〉
]

We can show that the convergence of this algorithm is

f(xk)− f(x∗) ≤ O
(

LD3

k(k + 1)(k + 2)

)
. (3.13)

The big O is there because the complexity change in function of the update of ψk(x) up to a
factor. This function can, for example, be updated with linear of quadratic functions (in the
above case we showed the linear update). Indeed this result is much better than the regular
algorithm.

16

Chapter 4
Properties of the intersection of functional
classes

In general, we analyse the performances of a scheme over one "simple" and specific functional
class. However, sometimes an algorithm can have very different behaviour when we add additional
information over the function that we want to minimize. For example, under some assumptions
we can prove that the Newton’s method converges quadratically when we are close enough to the
optimum. But when we add the fact that the function is quadratic then the Newton’s method
converges in only one iteration.

The goal of this chapter is to derive some properties that we can deduce using the information
of the intersection of some functional classes. It will help us to analyse the behaviour of some
algorithms for functions which belong to several functional classes. Also, some classes will give
us a global upper bound, which can be useful for building a better algorithm based on the
minimization of the upper-estimations.

4.1 Functions with Lipschitz-continuous gradient and Hessian

We start from analysing this very important class: if some function f belongs to Sσ,L then we
can apply either the gradient method or the CNM with some guarantees.

All functions f ∈ Sσ,L have the following two properties:

f ′′(y) � σI, σ > 0,

‖f ′′(y)− f ′′(x)‖ ≤ L‖y − x‖.

However, we can put these two conditions together and try to have an equivalent definition of
the class Sσ,L.

Theorem 4.1.1. A function f belongs to Sσ,L if and only if for all x, y ∈ Rn and for all vectors
u ∈ Rn we have

〈
[f ′′(y)− f ′′(x)]u, u

〉
≤ min

{
L‖y − x‖‖u‖2 ;

〈
[σI − f ′′(x)]u, u

〉}
. (4.1)

17

CHAPTER 4. PROPERTIES OF THE INTERSECTION OF FUNCTIONAL CLASSES

Proof: First suppose that f ∈ Sσ,L. Since f ′′(x) � σI we have for any u ∈ Rn

〈
f ′′(y)u, u

〉
≤ σ‖u‖2 = 〈[σI]u, u〉

⇔
〈
[f ′′(y)− f ′′(x)]u, u

〉
≤
〈
[σI − f ′′(x)]u, u

〉
.

Moreover,

〈
[f ′′(y)− f ′′(x)]u, u

〉
≤ ‖f ′′(y)− f ′′(x)‖‖u‖2 ≤ L‖y − x‖‖u‖2.

By combining these two inequalities we get the desired result. Now suppose that f satisfies (4.1)
and let us show that f ∈ Sσ,L. First, we will prove that f(y) � σI. Indeed,

〈
[f ′′(y)− f ′′(x)]u, u

〉
≤
〈
[σI − f ′′(x)]u, u

〉
⇔
〈
[f ′′(y)]u, u

〉
≤ σ‖u‖2

⇒〈[f
′′(y)]u, u〉
‖u‖2

≤ σ, u 6= 0

⇔max
u6=0

〈[f ′′(y)]u, u〉
‖u‖2

≤ σ.

Meaning that λmax(f ′′(y)) ≤ σ. This condition is equivalent to

f ′′(y) � σI

for all y. Now we will prove the second condition. Indeed,

〈
[f ′′(y)− f ′′(x)]u, u

〉
≤ L‖y − x‖‖u‖2.

We can use this inequality with x and y interchanged to conclude that

|
〈
[f ′′(y)− f ′′(x)]u, u

〉
| ≤ L‖y − x‖‖u‖2.

Finally,

| 〈[f ′′(y)− f ′′(x)]u, u〉 |
‖u‖2

≤ L‖y − x‖.

and we get the result by taking the maximum over u.

Now suppose that the direction of u is fixed. One interesting thing to know is the norm of y − x
such that the minimum will switch between two values. We need to compute ‖y−x‖ which solve
the following equation:

L‖y − x‖‖u‖2 =
〈
[σI − f ′′(x)]u, u

〉
.

We find easily that

‖y − x‖ = 〈[σI − f
′′(x)]u, u〉

L‖u‖2
.

18

CHAPTER 4. PROPERTIES OF THE INTERSECTION OF FUNCTIONAL CLASSES

We can see that in fact the right hand side is homogeneous of degree zero in u. Let us introduce
a parameter γx(y):

γx(y) = min
{

1; 〈[σI − f
′′(x)](y − x), y − x〉
L‖y − x‖3

}
.

We can recognize on the right the "relative" switching value when u = y− x. We can now derive
a weaker condition (but more useful for later) of inequality (4.1).

Corollary 4.1.1. If a function f belongs to Sσ,L then

〈
[f ′′(y)− f ′′(x)](y − x), y − x

〉
≤ γx(y)L‖y − x‖3 (4.2)

Proof: First, suppose that γx(y) = 1. In this case, by definition of γx(y),

L‖y − x‖3 ≤
〈
[σI − f ′′(x)](y − x), y − x

〉
Thus we get the right expression using (4.1) with u = y − x. Suppose now γx(y) < 1. Using the
same argument (4.2) is proved.

We have now a simpler expression for the integration. We will now see two very interesting
inequalities, very similar to (2.11) and (2.12).

Theorem 4.1.2. If f ∈ Sσ,L, then for any x, y:

〈
f ′(y)− f ′(x)− f ′′(x)(y − x), y − x

〉
≤
(
γx(y)− γx(y)2

2

)
L‖y − x‖3 (4.3)

f(y)− f(x)−
〈
f ′(x), y − x

〉
− 1

2
〈
f ′′(x)(y − x), y − x

〉
≤
(
γx(y)(1− γx(y))

2 + γx(y)3

6

)
L‖y − x‖3

(4.4)

Proof: Using the definition of γx(y),

〈
f ′(y)− f ′(x)− f ′′(x)(y − x), y − x

〉
=

1ˆ

0

〈
(f ′′(x+ τ(y − x))− f ′′(x))(y − x), y − x

〉
dτ

≤
1ˆ

0

min
{
τL‖y − x‖3 ;

〈
(σI − f ′′(x))(y − x), y − x

〉}
dτ

=
γx(y)ˆ

0

τL‖y − x‖3dτ +
1ˆ

γx

〈
(σI − f ′′(x))(y − x), y − x

〉
dτ

= γ2
x(y)L

2 ‖y − x‖3 + (1− γx(y))
〈
(σI − f ′′(x))(y − x), y − x

〉
.

If γx(y) = 1, then we get (4.3). If γx(y) < 1, we just replace 〈(σI − f ′′(x))(y − x), y − x〉 by

19

CHAPTER 4. PROPERTIES OF THE INTERSECTION OF FUNCTIONAL CLASSES

L‖y − x‖3γx(y) to have also (4.3). Now we can use this result for the proof of (4.4):

f(y)− f(x)−
〈
f ′(x), y − x

〉
− 1

2
〈
f ′′(x)(y − x), y − x

〉
=
ˆ 1

0

〈
f ′(x+ τ(y − x))− f ′(x)− f ′′(x)τ(y − x), y − x

〉
dτ

=
ˆ 1

0

〈
f ′(x+ τ(y − x))− f ′(x)− f ′′(x)τ(y − x), τ(y − x)

〉 1
τ

dτ

≤
ˆ γx(y)

0

1
2L‖y − x‖

3τ2dτ +
ˆ 1

γx(y)

(
γx(y)
τ
− γx(y)2

2τ2

)
L‖y − x‖3τ2dτ

=L‖y − x‖3
(
γx(y)− γx(y)2

2 + γx(y)3

6

)
.

We can remark that we have now a new upper bound (4.4) for functions f ∈ Sµ,L. This upper-
bound combines two interesting aspects of the functional class:

• The first one is the local cubic approximation. When y is close to x, then the model is
cubic and thus gives us a very accurate approximation of f .

• However, when y is far from x then the model becomes quadratic. This quadratic model
will grow very slowly in comparison with the cubic one.

We will see later that this "switched model" (locally cubic, globally quadratic) will be very useful
for the interpretation of the behaviour of the CNM on some functional classes.

4.2 Strongly convex functions with Lipschitz-continuous Hessian

In this section, all proofs are very similar. That is why all results will be admitted without any
proof.

Adding the strongly convex property will ensure us that the function has one and only one global
minimum. Also, the quadratic lower bound (2.2) due to the strong convexity assumption will
ensure us a minimal rate of growth 1. The consequence of this property is that the global rate of
convergence of the CNM will be improved on such functions.

Let us write down the formal definition of this class. A function f ∈ Sµ∞,L if and only if the
function f follows these two properties:

f ′′(y) � µI, µ > 0

‖f ′′(y)− f ′′(x)‖ ≤ L‖y − x‖
1In general we do not use (2.2). We prefer to use (2.3) which comes also from the strong convexity assumption.

20

CHAPTER 4. PROPERTIES OF THE INTERSECTION OF FUNCTIONAL CLASSES

Like in the section above, we will use a parameter βx(y):

βx(y) = min
{

1 ; 〈[f
′′(x)− µI](y − x), y − x〉

L‖y − x‖2
}
.

We can derive with this parameter the following theorem, which bounds below the function f by
a switched model (locally cubic, globally quadratic).

Theorem 4.2.1. Suppose f ∈ Sµ∞,L. We have

〈
f ′(y)− f ′(x)− f ′′(x)(y − x), y − x

〉
≥ −

(
βx(y)− βx(y)2

2

)
L‖y − x‖3 (4.5)

f(y)−f(x)−
〈
f ′(x), y − x

〉
− 1

2
〈
f ′′(x)(y − x), y − x

〉
≥ −

(
βx(y)(1− βx(y))

2 + βx(y)3

6

)
L‖y−x‖3

(4.6)

Unfortunately, we will see later that having a very precise lower bound will not give us more
information about the minimal decrease of the function f . However it does not mean that having
a strongly convex function does not impact the global complexity.

4.3 Strongly convex functions with Lipschitz-continuous gradi-
ent and Hessian

The last class which remains to be analyzed is Sµσ,L. Any function f ∈ Sµσ,L satisfies

µI � f ′′(y) � σI, 0 < µ ≤ σ,

‖f ′′(y)− f ′′(x)‖ ≤ L‖y − x‖.

Unfortunately, we cannot derive better bounds than (4.4) and (4.6). But functions which be-
long to this class are very interesting for this reason: in [4] it is shown that strongly convex
functions with Lipschitz-continuous gradient are easy for first order methods. Moreover, adding
the Lipschitz-continuous Hessian condition will allow us to apply and compare the CNM or its
variants to the first order methods.

In [2] it is shown that the CNM enters polynomially to the quadratic region of convergence,
while some first order methods (say, for example, the gradient method) converge globally with a
linear rate of convergence, which is indeed much better. In the same paper it was introduced the
following open question to which we will try to find an answer:

"For the problem class Sµσ,L, can we get any advantages from the second order schemes being used
at the initial stage of the minimization process?".

21

CHAPTER 4. PROPERTIES OF THE INTERSECTION OF FUNCTIONAL CLASSES

4.4 Relaxation of the bounds for Sµσ,L

In this section we will show weaker results of (4.4) and (4.6) by relaxing parameters γx(y) and
βx(y). The aim of this relaxation is to have simpler bounds, which is useful for example when we
want to minimize the model.

First of all we will introduce a new parameter θx(y):

θx(y) = min
{

1 ; σ − µ
L‖y − x‖

}
.

The main advantage of θx(y) is that this parameter does not depend on a scalar product. Also,
for any x, y we have

γx(y) ≤ θx(y),

βx(y) ≤ θx(y).

Which allow us to replace γx(y) and βx(y) by θx(y) in (4.4) and (4.6). Finally, if f ∈ Sµσ,L we can
put the two bounds together:

Corollary 4.4.1. If f ∈ Sµσ,L, then for any x, y in dom f :

∣∣〈f ′(y)− f ′(x)− f ′′(x)(y − x), y − x
〉∣∣ ≤ (θx(y)− θx(y)2

2

)
L‖y − x‖3 (4.7)

∣∣∣∣f(y)− f(x)−
〈
f ′(x), y − x

〉
− 1

2
〈
f ′′(x)(y − x), y − x

〉∣∣∣∣ ≤
(
θx(y)(1− θx(y))

2 + θx(y)3

6

)
L‖y−x‖3

(4.8)

22

Chapter 5
CNM applied to strongly convex functions

Let us analyse the global behaviour of CNM on strongly convex functions. A local result is given
in [2]: the CNM converges quadratically when we are close to the optimum, like the Newton’s
method. But the convergence of the algorithm in the first stage is still proportional to

√
D (where

D is the diameter of the set {x : f(x) ≤ f(x0)}) when we add the smooth assumption. This is
quite bad because the gradient method achieves a much better global complexity.

The goal of this section is first to describe with precision the behaviour of CNM on strongly
convex functions with Lipschitz-continuous Hessian. Then we will show some specific difficult
functions for CNM.

5.1 Impact of the strong convexity assumption

We have seen before (equation (4.6)) a new expression of the lower bound of a function f ∈ Sµ∞,L.
This new expression can now be used to characterize with more precision the decrease of the
function between two iterations:

Lemma 5.1.1. Suppose f ∈ Sµ∞,L. Then

f(x)− f(T) ≤
(
βx(T)(1− βx(T)) + 1

2 − βx(T)3

6

)
L‖T − x‖3 + 1

2
〈
f ′′(x)(T − x), T − x

〉
(5.1)

Proof: By using (4.6) in combination (3.11) with we get:

f(T)−f(x)+ 1
2
〈
f ′′(x)(T − x), T − x

〉
+L

2 ‖T−x‖
3 ≥ −

(
βx(T)(1− βx(T))

2 − βx(T)3

6

)
L‖T−x‖3

which leads us to the desired result.

This is for us a bad news: improving the lower bound (2.12) with the strongly convex assumption
does not gives us additional information on the minimal decrease. However, we can use this
assumption in (3.12):

f(x)− f(T) ≥ 1
2
〈
f ′′(x)(T − x), T − x

〉
+ L

3 ‖T − x‖
3

≥ µ

2 ‖T − x‖
2 + L

3 ‖T − x‖
3.

23

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

However this relation is difficult to use. This is why we will decompose the inequality into two
simpler relations:

f(x)− f(T) ≥ µ

2 ‖T − x‖
2, (5.2)

f(x)− f(T) ≥ L

3 ‖T − x‖
3. (5.3)

The first inequality will be used when we are close to the optimum because ‖T − x‖2 will be
larger than ‖T −x‖3. We will thus use the second one to describe the first stage of the algorithm.
Sometimes we prefer to use (5.2) and (5.3) with (3.10):

f(x)− f(T) ≥ µ

2L‖f
′(T)‖, (5.4)

f(x)− f(T) ≥ 1
3
√
L
‖f ′(T)‖3/2. (5.5)

5.2 Stopping criterion

The main goal is to find x : f(x)− f(x∗) ≤ ε. We will try here to have similar stopping criterion.
For example, a more interesting condition can be on ‖x−T‖ or ‖f ′(T)‖, much easier to compute.

Lemma 5.2.1. We have

f(T)− f(x∗) ≤ 1
2µ‖f

′(T)‖2 (5.6)

f(T)− f(x∗) ≤ L2

2µ‖T − x‖
4 (5.7)

By consequence, if one of these conditions is satisfied,

‖f ′(T)‖ ≤
√

2µε,

‖x− T‖ ≤ 4

√
2µ
L2 ε,

then f(T)− f(x∗) < ε.

Proof: First we will prove (5.6). Using (2.4) at x = T :

f(T)− f(x∗) ≤ 1
2µ‖f

′(T)‖2. (5.8)

Having 1
2µ‖f

′(T)‖2 ≤ ε ensures us the desired accuracy. Now we will prove (5.7). If we use (3.10)
on (5.8) at x = T :

f(T)− f(x∗) ≤ L2

2µ‖T − x‖
4.

Asking L2

2µ‖T − x‖
4 to be smaller than ε gives us (5.7).

24

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

For theoretical purposes we may be interested in a stopping criterion on ‖x − x∗‖. We will see
later that we can characterize the quadratic region of convergence with this value.

Lemma 5.2.2. We have
f(T)− f(x∗) ≤ L

3 ‖x− x
∗‖3 (5.9)

Proof: Start with the upper bound of (2.12) at y = T :

f(T) ≤ f(x) +
〈
f ′(x), T − x

〉
+ 1

2
〈
f ′′(x)(T − x), T − x

〉
+ L

6 ‖T − x‖
3.

By definition of T :

f(T) ≤ min
y

[
f(x) +

〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
+ L

6 ‖y − x‖
3
]
.

We can now use the lower bound of (2.12) in the previous inequality:

f(x) +
〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
+ L

6 ‖y − x‖
3 ≤ f(y) + L

3 ‖y − x‖
3.

leading to
f(T) ≤ min

y

[
f(y) + L

3 ‖y − x‖
3
]
.

If we choose y to be equal to x∗, we get exactly (5.9).

One can see that we could also use the lower bound (4.6). Using this inequality leads us to a
little bit stronger (but very similar) result, but the expression is too complex to be useful.

5.3 Global complexity

5.3.1 First stage of the minimization process

We will now try to describe with precision the global complexity of the CNM when applied on
strongly convex functions with Lipschitz-continuous Hessian. We will derive first the asymptotic
rate of convergence, i.e. the bound on the maximum number of iterations when we are very far
from the optimum.

Theorem 5.3.1. When applied on functions which belongs to Sµ∞,L, the rate of convergence of
the CNM is bounded as follow:

δk ≥
(

1 + K√
D

)
δk+1 (5.10)

where K = 1
3

√
2µL . Using the relation (1.1) the maximum number of iterations is bounded by

k(1)
max ≤

√
D

K
log

(
δ0
ε

)
= 3√

2

√
LD

µ
log

(
δ0
ε

)
(5.11)

25

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

Proof: Let us start from (5.5) and decompose ‖f ′(T)‖3/2 into ‖f ′(T)‖‖f ′(T)‖1/2. We can use
the expression (2.4) to bound ‖f ′(T)‖ and (2.5) to bound ‖f ′(T)‖1/2:

‖f ′(T)‖ ≥
√

2µ(f(T)− f(x∗))

‖f ′(T)‖1/2 =
√
‖f ′(T)‖‖T − x

∗‖
‖T − x∗‖

≥

√
f(T)− f(x∗)

D
because D ≥ ‖T − x∗‖.

Finally, using these two inequalities on (5.5) (where xk = x and xk+1 = T),

f(xk)− f(xk+1) = δk − δk+1 ≥
1

3
√
L
‖f ′(k + 1)‖‖f ′(k + 1)‖1/2

≥ 1
3

√
2µ
L︸ ︷︷ ︸

=K

1√
D
δk+1,

we get the desired result.

Despite how the expression looks, the rate of convergence is not linear because kmax grows in
√
D

and not in log(D). However, the result is global, meaning that the CNM will converge for any
starting point x0. Also, the CNM will reach the optimum at any accuracy with a finite number
of operations.

We can also see that the expression is quite strange: the decreasing is leaded by a coefficient
which depends of D. Before going further, we will analyse this expression. Assume D very large,
then we can use the first-order approximation:

δk ≤

 1
1 + K√

D

 δk−1 ≈
(

1− K√
D

)
δk−1.

With (2.2) we can deduce that

D ≤
[2
µ
δ0

]1/2
. (5.12)

Then,

δk ≤

1− K[
2
µδ0

]1/4
 δk−1 ≤

1− K[
2
µδ0

]1/4

k

δ0.

Now we can use one more time a first-order approximation to have a lower bound on the rate of
convergence in the worst case:

δ0 − k
[
µK4

2

]1/4

δ
3/4
0 .

We see here clearly a polynomial expression of the decrease of the function. Note that we can

26

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

also replace the value of D using (5.12) in (5.11):

k(1)
max ≤

[
2
µδ0

]1/4
K

log
(
δ0
ε

)
.

Surprising enough, this expression is worse than (3.8) despite the "linear-like" expression (5.10).
However, it gives us a good estimation of the relation between the number of iterations and D:
(5.10) grows is O

(√
D log(D)

)
while (5.10) grows in O

(
D3/4

)
(if we use (3.3), assuming that

we have done already one iteration). If we compare it with (3.9) (assuming that ε ≥ ω̄), then
we remark that the estimation is not so bad : indeed asymptotically this precise bound is much
better, but the constant is also higher, which means that for D not too big, the two bounds are
quite equivalent.

Despite the fact that (5.10) is not the best bound, the expression of its maximum number of
iterations and its rate of convergence summarize well the behaviour of the CNM on strongly
convex function with Lipschitz-continuous Hessian. We will see also later that the expression
(5.10) is very similar to the complexity of the fast gradient method applied on Sµ∞,L

5.3.2 Super-linear and quadratic rate of convergence

Like the Newton’s method the CNM is able to converge faster when we get closer to the optimum.
Let us introduce two switching values ω1 and ω2:

ω1 =
(3
L

)2 (µ
2

)3
, ω2 = µ3

2L2 = 4
9ω1. (5.13)

Those two switching values are conditions on δk. Let us first prove the super-linear then the
quadratic rate of convergence.

Lemma 5.3.1. Suppose f(x)− f(x∗) ≤ ω1. Then the CNM converges superlineary:

δk+1 ≤
√

1
ω1
δ

3/2
k (5.14)

and the number of iterations needed to reach ε is

k(3)
max ≤ log3/2

 log
(ω1
ε

)
log

(
ω1
δ0

)
 . (5.15)

Proof: Use (5.9) then (2.2):

f(T)− f(x∗) ≤ L

3 ‖x− x
∗‖3 ≤ L

3

(2
µ

(f(x)− f(x∗))
)3/2

.

27

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

It is exactly (5.14). Denote
αk = δk

ω1
.

Then,
αk ≤ α

3/2
k−1 ≤ α

(3/2)k
0 .

Since we want a precision ε, the condition

α
(3/2)k
0 ≤ ε

ω1

is sufficient, leading us to (5.14).

We can compare this super-linear rate with (3.7). First of all it is obvious that the region of super
linear convergence of (5.14) is bigger and the coefficient which multiply δ3/2

k is also smaller. We
can thus conclude that the rate (5.14) is a better result that (3.7) in any cases. Now we will see
the quadratic rate of convergence of δk (presented in [2]) and ‖xk+1 − xk‖.

Lemma 5.3.2. Suppose f(x) − f(x∗) ≤ ω2 or ‖x0 − x1‖ ≤ 3µ
2L . Then the CNM converges

quadratically:

‖xk+1 − xk‖ ≤
L

µ
‖xk − xk−1‖2, (5.16)

δk+1 ≤
1
ω2
δ2
k. (5.17)

Therefore, the number of iteration needed to reach ε is

k(4)
max ≤ log2

 log
(ω2
ε

)
log

(
ω2
δ0

)
 . (5.18)

Proof: Let us use firstly (3.11). Indeed,

‖f ′(x)‖‖T − x‖ ≥
〈
f ′′(x)(T − x), T − x

〉
+ 1

2L‖T − x‖
3.

Since f is strongly convex (meaning that f ′′(x) � µI) and if we forget the last term,

‖f ′(xk)‖ ≥ µ‖xk+1 − xk‖.

Now, use (3.10). We get
‖xk+1 − xk‖ ≤

L

µ
‖xk−1 − xk‖2.

If ‖x0 − x1‖ ≤ µ
L is satisfied, then the above sequence converges to zero.

We can now build a stronger condition if we use (5.2):

f(x)− f(T) ≤ µ3

2L2 = ω1 ⇐ δ0 ≤
µ3

2L2 = ω1.

28

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

We can also describe the rate of convergence of δk. If we use (5.4) then (2.4):

δk ≥ f(xk)− f(xk+1) ≥ µ

2L‖f
′(xk+1)‖ ≥ µ

2L

√
2µδk+1.

Leading us to the expression (5.17), with the same condition of convergence.

5.3.3 Bound on the total number of iterations

We will try here to put together all previous results in order to have a precise bound on the total
number of iterations. We will assume that we begin very far from the solution (D is big) and
that we want a very accurate solution (ε is very small).

We have already computed the number of iterations in the first phase (see (3.9)). We will now
try to compute the minimal number of iterations in the second phase, i.e. when δ0 ≤ ω̄ (where
ω̄ = µ3

18L2). Let us first estimate a condition on δk for which the super-linear rate converges faster
than the quadratic rate. We need to find ζ such that√

1
ω1
ζ3/2 = 1

ω2
ζ2.

We find
ζ = ω2

2
ω1

= 2µ3

9L2 . (5.19)

We see here that the value of ζ is larger than ω̄. It means that at the end of the first phase, we
have a point which is already in the region of quadratic convergence. Let us estimate the number
of iterations in this phase using (5.18):

k ≤ log2

(
log

(ω2
ε

)
log

(ω2
ω̄

)) = log2

(
log4

(
ω2
ε

))
.

We have now a good idea of the total complexity of the CNM :

kmax ≤ 14.6
√
LD

µ
+ log2

(
log4

(
ω2
ε

))
. (5.20)

We see that the number of iterations is proportional to the square-root of D. Paper [5] compared
the performances of the CNMwith the performances of the optimal first-order methods for smooth
strongly convex functions (see [4] for more information). Let us call L̂ the largest eigenvalue
of f ′′(x). Since we work with functions with Lipschitz-continuous Hessian, we can estimate
σ = L̂+ LD. The complexity of the optimal first-order method is of the order of

O

√ L̂+ LD

µ
log

(
(L̂+ LD)D2

ε

) .

29

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

We conclude that for strongly convex functions the performance of the CNM is much better than
the performance of the first order method on our class of problem. Note that with the complexity
bound (5.11) we have the same conclusion.

5.4 Examples where CNM works bad

We have seen before a bound on the total number of iteration for the CNM. We have also seen
that the number of iterations grows in O

(√
LD
µ

)
. We will try here to analyse several functions

which are difficult to minimize with the CNM.

5.4.1 Intuitive example : smooth approximation of absolute value

First of all we will analyse the performance of the CNM on a smooth approximation of absolute
value. Let1 f(x) = log (ex + e−x). Indeed,

• f ′(x) = ex−e−x
ex+e−x ≈ sign(x).

• f ′′(x) = 1− f ′(x)2, f ′(0) = 0⇒ x∗ = 0.

• |f ′′′(x)| =
∣∣∣8(ex−1)(ex+1)e2x

(e2x+1)3

∣∣∣ < 1 → L = 1.

Let us call D = |x0− x∗| = |x0|. For more simplicity, we will assume that x0 is positive and very
big and that ε is not too small. We can now deduce µ

µ = f ′′(x0)− f ′(x0)2 > 0

meaning that the function is strongly convex over the domain {x : |x| ≤ D}. Indeed, the
parameter µ decreases a lot in function of D and tends to zero, meaning that f is "only" strictly
convex on R. The goal of this example is not to show the worst case function but to understand
intuitively the characteristics of a function which is difficult for the CNM. Since we assumed that
ε is not very small and x positive, we can write an approximation of the mapping TL(x):

TL(x) = arg min
y

(y − x) + 1
6 |y − x|

3.

because f ′(x) ≈ 1 and f ′′(x) ≈ 0. We have thus

TL(x) = x−
√

2.

We can easily compute an approximation of the number of iterations:

k ≈ D − ε√
2
.

1There exists other kinds of smooth approximation of |x|, like
√
ε+ x2.

30

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

We see here that the number of iteration is much worse than (5.20). It is due to the fact that µ
is function of D.

The main characteristic of this function is the (almost) constant gradient f ′(x). The norm of
the gradient does not increases when D is larger. So one characteristic of difficult functions is
having a gradient which does not increase a lot when we are far from the optimum, while staying
strongly convex. If we use (2.2) and (2.4) we get

µ‖x− x∗‖ ≤ ‖f ′(x)‖.

For more simplicity we will work in one dimension. If we take the lower-bound and integrate one
time, we get

f(x)− f(x∗) = µ

2 (x− x∗)2.

This is indeed a quadratic function. We can thus expect that kind of functions is difficult to
minimize with the CNM.

5.4.2 One-dimensional quadratic function

We have seen before an intuition about a difficult class of functions: the quadratic functions.
However, for such functions, L = 0 and the CNM converges in only one iteration. For now,
assume that we work with f(x) = x2

2 and we want a precision not too small. Indeed, µ = 1.
However, the estimation of the Lipschitz constant is pessimistic: L = 1. Let us now write the
mapping TL(x).

TL(x) = arg min
y

[
x(y − x) + 1

2(y − x)2 + 1
6 |y − x|

3
]
.

The first order optimality condition is

T − 1
2(T − x)2 = 0.

We can now compute the explicit expression of the solution T

T = x+ 1−
√

2x+ 1 ≥ x−
√

2x.

To avoid negative numbers, we suppose x ≥ 2. Suppose we want to reach a precision ε. This
condition is strictly equivalent to

‖xk − x∗‖ = ‖xk‖ ≤
√
ε.

We can now compute the minimal number of iterations to reach this accuracy:

√
ε ≥ xk = TL(xk−1) ≥ xk−1 −

√
2xk−1 ≥ x0 − k

√
x0.

31

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

Leading us to

kmin ≥

√
D

2 −
√

ε

2D ≥

√
D

2 .

We can compare this lower bound to (3.9):

kmax ≤ 14.6
√
LD

µ
= 14.6

√
D.

Both bounds grow in
√
D, meaning that we have a good upper bound, describing nicely the

complexity of the CNM applied on the class Sµ∞,L. One can say that assuming an error on the
parameter L is kind of "cheating". In practice, we can run the algorithm with bad estimation of
the parameter L, but let us suppose that we have a subroutine which estimates perfectly a local
value of L. We will now build a very similar function. Call

h1 = 2σ − µ
L

, h2 = σ − µ
2 .

Now we will build g(x) ∈ Sµσ,L:

g(x) = −
(
h2
h2

1

)
sin(h1x) + (h2 + µ)x

2

2 + h2
h1
x (5.21)

g′(x) = −
(
h2
h1

)
cos(h1x) + (h2 + µ)x+ h2

h1
(5.22)

g′′(x) = h2 sin(h1x) + h2 + µ. (5.23)

The behaviour of the CNM on g(x) is very similar to (1/2)x2. For the illustration (see figure
(5.1)), let us see the graph of g(x), (1/2)x2 and x with µ = L = 1 and σ = 2. We see on the
figure that g(x) are between µ

2x
2 and σ

2x
2. We have also that g′(x) and g′′(x) is between the

gradient/Hessian of the two square functions. We can thus assume that when we apply the CNM
algorithm on g(x) the number of iterations will also grow in O(

√
D), while having a local value

of the parameter L equal to one.

32

CHAPTER 5. CNM APPLIED TO STRONGLY CONVEX FUNCTIONS

0 1 2 3 4 5
0

5

10

15

20

25

x

f(
x)

x
2

2

g(x)

x
2

Figure 5.1: Comparison of the graph of some functions in Sµσ,L.

33

Chapter 6
Combining gradient method and CNM: the
hybrid scheme

6.1 Differences between the gradient method and CNM

In the previous section, we analysed the complexity of the CNM on strongly convex functions,
and we found that a bad function is the quadratic one. The bad news is the following: the
example x2 belongs also to Sµσ,L. We know that for this class there exists a gradient method
which converges linearly, and the optimal method for this class has the following complexity:

kOptimal method
max ≤

√
σ

µ
log

(
δ0
ε

)
.

The number of iterations grows in log(δ0)(and, by consequence, also in log(D)), which is much
better than the CNM. It is very weird, because adding one more information (in this case: the
function is smooth), does not affect the behaviour of the CNM.

The main reason is the following: we have seen before that the CNM minimizes an auxiliary
function m3(x) (model of order 3) to find the next iterate. This secondary function is a global
upper-bound, defined at (3.1). Let us compare this cubic model with the bound computed at
(2.7):

m2(y) = f(x) +
〈
f ′(x), y − x

〉
+ σ

2 ‖y − x‖
2

The minimiser of this function is xk+1 = xk − 1
σf
′(xk). We can easily deduce that f(y) ≤ m2(y).

We have in fact here a quadratic model, which is also a global upper-approximation of function f .

We will now compare the two bounds. Suppose that we are looking at y which is very far from x

(for example when we perform large steps). Then the error between the two models is of the order
of L

6 ‖y − x‖
3, meaning that for large steps the cubic model m3(y) is not useful in comparison

with m2(y). However, when we are very close to x, then the conclusion is not the same: the
approximation is much better with the cubic model. Because the two aspects are very important
for the approximation of the function, we will thus analyse the hybrid method, which consists to
take xk+1 :

xk+1 ∈ arg min
y

[m2(y), m3(y)] .

The general behaviour of this new algorithm will be the following : we can expect that the hybrid
method will take gradient steps at the first stage of the minimization process and CNM steps for

35

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

the last phase.

We should think at the fact that for this algorithm we need one more parameter σ. Having a
good estimation for such parameter can be sometimes difficult to obtain. Also, an adaptive al-
gorithm which implements this method has to handle two different parameters, which can be hard.

In this section we will work firstly with function with Lipschitz-continuous gradient and Hessian
(i.e. functional class Sσ,L). If needed, the convexity or strong convexity assumption will be added.

6.2 Complexity analysis

We will now try to derive the rate of convergence of the hybrid algorithm. We have seen before
that we expect the gradient method better than the CNM when we are far from the optimum.
If the algorithm takes the gradient steps at the first stage of the process, it means that

− 1
2σ‖f

′(x)‖2 ≤
〈
f ′(x), T − x

〉
+ 1

2
〈
f ′′(x)(T − x), T − x

〉
+ L

6 ‖T − x‖
3.

We can thus expect a condition over the gradient : when the norm of f ′(x) is large enough then
the gradient step will be taken.

Lemma 6.2.1. Suppose f ∈ Sσ,L. If we have

‖f ′(x)‖ ≥ 8σ
2

L
(6.1)

then minym2(y) ≤ minym3(y).

Proof: For more convenience in this proof, call Q = σ
√

2
L . Consider the following inequality in

variable z:
1
2z

2 − 2
3Qz −

Q2

2 ≥ 0.

We can show that this inequality holds for z ≥ 2Q. Let
√
‖f ′(x)‖ ≥ 2Q. We can thus write

‖f ′(x)‖
2 − 2‖f ′(x)‖1/2

3 Q− Q2

2 ≥ 0.

After a rearrangement of the terms, and by multiplying both sides by ‖f
′(x)‖
σ :

‖f ′(x)‖2

2σ ≥ 2‖f ′(x)‖3/2

3σ Q+ Q2

2σ ‖f
′(x)‖.

We can now replace Q by its expression:

‖f ′(x)‖2

2σ ≥ L

3

(2‖f ′(x)‖
L

)3/2
+ σ

L
‖f ′(x)‖.

36

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

The left-hand side is exactly f(x) − minym2(y). So, focus now on the right hand side of the
inequality. We can use (3.11) to deduce that

‖f ′(x)‖ ≥ L

2 ‖T − x‖
2.

If we use this intermediate result on our right hand side, we get

‖f ′(x)‖2

2σ ≥ L

3 ‖T − x‖
3 + σ

2 ‖T − x‖
2.

Since f has a Lipschitz-continuous gradient, f ′′(x) � σI:

‖f ′(x)‖2

2σ ≥ L

3 ‖T − x‖
3 + 1

2
〈
f ′′(x)(T − x), T − x

〉
.

We can now use (3.11) to add "zero" to our expression, leading us to

‖f ′(x)‖2

2σ ≥ −
〈
f ′(x), T − x

〉
− 1

2
〈
f ′′(x)(T − x), T − x

〉
− L

6 ‖T − x‖
3.

We can recognize the right hand side of the inequality to be f(x)−minym3(y), which proves the
desired result.

We have seen here that the gradient method will be very efficient during a long time. Whatever
the initial point will be, the gradient step will be chosen while the norm of the gradient is bigger
than a constant value. Thus, for D big, we can suppose that the total complexity is comparable
to the complexity of the gradient method only. However, if very-high accuracy is needed, then
the CNM step can be also useful: for example the convergence is quadratic for strongly convex
functions.

6.2.1 Global complexity for convex functions

Now we will add the convexity hypothesis. Recall that for such problem there exists (not always)
a convex set of global minimum X∗ of the function f . We will suppose in this section that this
set exists and is bounded. We will also suppose that the value D is also bounded and very big,
and the accuracy ε > 0 is very small.

First stage: gradient method

We have seen before that the gradient method will be used when ‖f ′(x)‖ ≥ 8σ2

L . We can prove
that the rate of this method is polynomial. Indeed, by definition of the gradient step,

f(xk)− f(xk+1) ≥ 1
2σ‖f

′(x)‖2

≥ 32σ
3

L2 .

37

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

Since f(x0)− f(x∗) ≥ f(x0)− f(xk) ≥ 4 σL , we have

k ≤ L2

32σ3 δ0.

By (2.7) we have that δ0 is bounded by σ
2D

2, leading us to a bound on the number of iterations
k1 in the first phase:

k1 ≤
L2

64σ2D
2. (6.2)

Last stage: Hybrid method

We have computed before the number of iterations for the gradient method. We can derive here
the general expression of the rate of convergence:

f(xk)− f(x∗) ≤ 2σD2

k + 4 .

We can now use this expression with (3.4) to deduce the rate of convergence of δk. Since we take
the best step between the gradient method and the CNM, we have

f(xk)− f(x∗) ≤ min
{

9LD3

(k + 4)2 ; 2σD2

k + 4

}
.

Let us have a switching value k̃ in function of D, meaning that k̃ solves

9LD3

(k̃ + 4)2 = 2σD2

k̃ + 4
.

We find
k̃ = 9L

2σD − 4.

Note that we cannot say that we already reached this switching value after the first phase because
(6.2) is an upper-bound on the number of iterations. Also, having more than (6.2) iterations does
not means that we will always use CNM because. This switching value just tells us that the rate
of convergence of the algorithm is characterized by the rate of the CNM.

Once this switching value is attained, we have to finish the minimization process by k2 iterations,
with k2 s.t.

9LD3

(k2 + max{k̃; k1}+ 4)2 ≤ ε.

Note that we cannot bound D because it can be as large as we want (if we want to bound D we
need a stronger assumption than convexity). We can thus obtain a sufficient condition for k2:

k2 ≥

√
9LD3

ε
−max{k̃; k1} − 4.

38

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

Total complexity

We have seen that for the first phase we bounded the k1 first iterations by a fixed value (defined
in (6.2)). Then, we needed to reach the switching value k̃. In this case the required number
of iterations is max{0; k̃ − k1}. During this phase, the rate of convergence is characterized by
the decrease of the gradient method. Finally, once this switching value is attained, the rate of
convergence is bounded by the expression of the rate of the CNM. The total number of iterations
kmax is thus bounded by

kmax ≤ k1 + max{0; k̃ − k1}+

√
9LD3

ε
−max{k̃; k1} − 4 =

√
9LD3

ε
− 4.

Surprising enough the total number of iterations is in fact the number of iterations needed when
using CNM. We can thus deduce that the hybrid method is not really useful on this class of
function. However, we need to keep in mind that at the first stage of the minimization process
we use only gradient steps, which are much more easier to compute than a CNM step.

6.2.2 Global complexity for strongly convex functions

In chapter 5 we noticed that the number of iterations of the CNM is quite big in comparison with
the gradient method when we begin far from the optimum. However when the accuracy ε is very
small, then the CNM is much more useful. Combining the two methods to minimize a function
f which belongs to the class Sµσ,L seems intuitive and efficient.

Before entering in the complexity analysis, we have to notice that for this class the optimal step
for the fixed-step gradient method is in fact (see [4])

xk+1 = xk −
2

σ + µ
f ′(x).

However, this step length is too big when µ → 0 (i.e. when a strongly convex function is close
to be a strictly convex function). Because we were interested in convex functions, we will let the
coefficient 1

σ instead of 2
σ+µ . This will not affect the final conclusion, but the bound on the total

number of iterations will indeed change up to a scalar factor.

First stage: gradient method

In this case, we can show that the rate of convergence is linear. Indeed, since we use the gradient
method, we can deduce the minimal decrease by replacing y − x by −1

σ f
′(x) in (2.7):

δk+1 ≤ δk −
1

2σ‖f
′(xk)‖2.

39

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

We can now use (2.4) to bound ‖f ′(x)‖:

δk+1 ≤
(

1− µ

σ

)
δk ≤ δ0e

−µ
σ

(k+1). (6.3)

We will now derive the number of iterations in the first phase. If we use (2.9), then

1
2σ‖f

′(xk)‖2 ≤ δk.

We can deduce with this result and (6.1) that the number of iterations k1 in the first phase is
bounded by

32σ
3

L2 ≤ δk1 ≤ δ0e
−µ
σ
k1 ⇒ k1 ≤

σ

µ
log

(
L2

32σ3 δ0

)
. (6.4)

At the end of this phase we have the following accuracy

δk1 ≤
1

2µ‖f
′(xk1)‖2 ≤ 32 σ4

µL2 . (6.5)

Second stage: Hybrid method

When the first phase is finished, we need to reach the region of super-linear convergence of the
CNM with the hybrid method. We have seen that after the gradient method phase, we have that
the accuracy δk1 is bounded (see the expression (6.5)). The region of super-linear convergence is
{x : f(x) ≤ ω1}, where ω1 is defined in (5.13).

In this phase we do not have any guarantee that we will go faster than the gradient method.
Therefore, the rate of convergence is still (6.3). The number of iterations k2 of the hybrid method
in this phase must ensure that δk∈[k1,k2] goes from δk1 to the region of super-linear convergence.
At first, let us see for which value of δ the rate of convergence of the gradient method is equal to
the super-linear rate:

(
1− µ

σ

)
δ =

√
1
ω1
δ3/2 ⇒ δ = ω1

(
1− µ

σ

)2
.

The number of iterations k2 must therefore satisfy δk2 ≤ ω1
(
1− µ

σ

)2. The following condition

δk1e
−µ
σ
k2 ≤ ω1

is thus sufficient. We can thus bound k2 by

k2 ≤
σ

µ
log

(
δk1

ω1
(
1− µ

σ

)2
)
≤ σ

µ

[
4 log

(
σ

µ

)
+ 2 log

(
16

3
(
1− µ

σ

))] . (6.6)

40

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

The accuracy at the end of this phase is as follow:

δk2 ≤ ω1

(
1− µ

σ

)2
. (6.7)

Last stage: CNM

Now we are in the region of super-linear convergence of the CNM. The gradient method becomes
now less useful because we do not have any guarantee that the gradient method will converge
faster when we are close to the optimum.

We need now to reach the region of quadratic convergence. We already computed the switching
value ζ in (5.19) (i.e. the condition on δ when the super-linear rate is slower than the quadratic
rate). We need thus to go from δk2 to ζ with a super-linear rate, leading to the following sufficient
condition on the number of iterations k3 in this phase (where αk = δk/ω1):

α
(3/2)k
0 ≤ ζ

ω1
.

By consequence, the bound on k3 is

k3 ≤ log3/2

 log
(
ω1
ζ

)
log

(
ω1
δk2

)
 ≤ log3/2

 log
(

4
9

)
− log

(
1− µ

σ

)
 .

At the end of this phase, we have δk3 ≤ ζ. Now we need to compute one last time the number of
iterations k4 for going from ζ to ε with a quadratic rate of convergence. Let αk be now δk

ω2
:

α2k
0 ≤ ε ⇒ k4 ≤ log2 log 4

9

1
ε
. (6.8)

Total complexity

Since we have computed the complexity of all phases, we can sum all ki in order to have an idea
of the maximal number of iterations kmax of the hybrid method:

kmax ≤
σ

µ

[
log

(
L2

32σ3 δ0

)
+ 4 log

(
σ

µ

)
+ 2 log

(
16

3
(
1− µ

σ

))]+log3/2

 log
(

4
9

)
− log

(
1− µ

σ

)
+log2 log 4

9

1
ε
.

We can summarize this result with the O notation, assuming δ0 very big and ε very small:

kmax = O
(
σ

µ
log

(
L2

σ3 δ0

)
+ log2 log 4

9

1
ε

)
. (6.9)

This expression tells us that the number of iterations is, as expected, of the order of the number of
iterations of the gradient method needed to reach the quadratic region of convergence combined

41

CHAPTER 6. COMBINING GRADIENT METHOD AND CNM: THE HYBRID SCHEME

with the number of iterations of the CNM once this region is attained.

Note that for this scheme the most of the work (the k1 first iterations) is achieved by the gradient
method. Also, the CNM step is at least as complicated to be computed as the gradient step,
meaning that the total number of iterations kmax itself is not really relevant alone, but must be
presented as kgradient + khybrid.

6.3 Conclusion

The hybrid method is very intuitive and gives us acceptable results: for strongly convex functions
we ensure at least the linear rate of convergence for any starting point, and at the end we will
converge very quickly to the optimum.

For convex function the conclusion is mitigated: we have seen that the number of iterations of the
hybrid method is not better than the CNM. However we need to keep in mind that this analysis
only take care of the worst case: In the average case, it is obvious that the hybrid method is at
least better than the CNM or the gradient.

The main drawback of this method is σ, a new parameter needed to run the hybrid algorithm.
The estimation of one parameter is much easier than two. Despite this fact, the gradient step is
free to compute in comparison of the CNM step. If we can have a good a priori estimation of
σ and L then the hybrid method is a good choice for minimizing strongly convex functions with
Lipschitz-continuous gradient and Hessian.

42

Chapter 7
Minimizing a more accurate model: the
γ-method

7.1 Motivations

In the previous section we analysed the hybrid method: assuming that we know the two param-
eters σ and L, we perform simultaneously a gradient and a CNM step, and we take the best one
between the two. However, the model that we minimize is not convex. We can imagine taking
the "convex hull" of the two models, but this task can be complex1.

We can us make another suggestion: instead of taking the minimum of the two models m2(y)
and m3(y), we can minimize directly the model (4.4) (we will call it the γ-model or mγ(y)):

min
y
f(x) +

〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
+ L

6 ‖y − x‖
3
(
γx(y)(1− γx(y))

2 + γx(y)
6

)
︸ ︷︷ ︸

=mγ(y)

.

By construction, the γ-model belongs to Sσ,L. Also, we have

mγ(x) = f(x), m′γ(x) = f ′(x), m′′γ(x) = f ′′(x)

(the derivatives are easy to compute since we are around y = x, meaning that γx(x) = 1). The
second derivative of this model is

m′′γ(y) =

f
′′(x) + L

‖y−x‖(y − x)(y − x)T if γx(y) = 1

σI if γx(y) < 1

If we add the fact that mγ(x) ∈ Sσ,L, this expression leads us to the relation m′′γ(y) � f ′′(x),
meaning that if f is strongly convex, then the model will be also strongly convex (of parameter
λmin[f ′′(x)]).

1In fact, taking the minimum of the two models is more or less equivalent of minimizing the convex hull of the
two models.

43

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

7.2 Complexity analysis

This model looks very promising: we bound a function f ∈ Sµσ,L by another function in Sµσ,L. We
can thus conclude that mγ(y) is the best global upper-bound for this class. We can thus expect
from this model a performance which is at least as good as the hybrid method.

We can also remark that mγ is similar to the hybrid method, because the model is both quadratic
and cubic. When the step size is small, then γx(y) will be equal to one. Therefore, we have in
this case mγ(y) = m3(y). However, suppose the step size is very large, i.e. γx(y) → 0. In this
case mγ(y) = m2(y). So for the extreme cases the two methods are equivalent. The advantage
of this method is when m3(y) is comparable to m2(y), i.e when γx(y) is not too small, but below
one. In this case we can see with the γ-model a modified gradient step which is more aggressive.
Suppose γx(y) < 1, then mγ(y) can be written as

mγ(y) = f(x) +
〈
f ′(x), y − x

〉
+ σ

2 ‖y − x‖
2 + L‖y − x‖3

(
γx(y)3

6 − γx(y)2

2

)
︸ ︷︷ ︸

<0

< m2(y). (7.1)

We will see that this expression leads to longer steps than the usual gradient method.

With the previous results, we can thus deduce that

mγ(y) ≤ min {m2(y) ; m3(y)} .

The complexity of the γ-method is thus at least as good as the hybrid method.

Unfortunately, because γx(y) can be as close to zero as possible we cannot improve the complexity
bound (6.9). But in practice the algorithm converge a little bit faster when γx(y) becomes not
too small. The usefulness of this scheme is finally quite mitigated: we have a method which is a
least better than the hybrid method, but the global performances are not really improved.

We can confirm this fact by a numerical example. Let us take the function g(x) defined in (5.21)
with parameters µ = 1, σ = 20 and L = 0.01. Suppose that we want a very large ε such that
we have always γx(xk+1) < 1. Suppose also that we minimize this function with the gradient
method and the γ-method with an error on the parameters (σ̂ = 1000σ and L̂ = 100L).

In this case, we can see in figure (7.2) that at the beginning of the process, γx(y) is very close
to zero. This is why the global complexity is not better than the gradient method (this fact is
confirmed with figure (7.1): at the beginning, both method converge at the same rate). How-
ever, when we get closer to the minimum of this function, then we see that the convergence
becomes incredibly fast. We can explain this fact with the figure (7.2) and formula (7.1). We
see that because of the right parenthesis we use a much larger step than the gradient method,

44

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

leading to a better local rate of convergence, which spares more or less the half of the number
of iterations of the gradient method. Despite the fact that the theoretical conclusion are not
really optimistic, the performance of the process is much better when applied in practice. Also,
we applied this scheme on a one-dimensional example. The algorithm can thus be more efficient
on a more complex function because unlike the gradient method, we also take care of the Hessian.

0.5 1 1.5 2 2.5 3

x 10
4

10
2

10
4

10
6

10
8

Iteration

A
cc
u
ra
cy

ε

γ−method
Fixed−step gradient method

Figure 7.1: Comparison of the convergence between the gradient method and the γ-method

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
10

0

10
1

10
2

10
3

10
4

Iteration

R
el
a
ti
v
e
st
ep

si
ze

Figure 7.2: Relative step size of the γ-method compared to the fixed step gradient method.

The main drawback of this scheme is minimizing mγ(y): computing the next iterate xk+1 is
harder than a simple gradient step, but as we have seen before, the gradient step can be very
close to the γ-method step: we can thus use it as a good initial point for an iterative method
which minimizes mγ(y). We will thus see two variants of this method where the next iterate is
simpler to compute.

45

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

7.3 The γ-method with non-optimal direction

We have seen before that minimizing mγ(y) can be difficult. The real difficulty is in fact the
computation of the optimal direction. But when the direction is fixed the problem is much eas-
ier, and we can have an explicit formula for the optimal norm associated to a direction.

Let us write the step s = αu, where α = ±‖s‖ and u = ± s
‖s‖ . In this case both s and αu are

equivalent. Suppose that α is very big such that γx(x+ αu) < 1. Indeed,

f(x+ s) ≤ f(x) + α
〈
f ′(x), u

〉
+ σ

2α
2 + α3L

(
〈f ′′(x)u, u〉3

6L3α3 − 〈f
′′(x)u, u〉2

2L2α2

)
.

Suppose now that u is fixed. The first optimality condition is

〈
f ′(x), u

〉
+ σα− 〈f

′′(x)u, u〉2

2L = 0.

We can thus find the optimal norm of a given direction:

α∗ = 1
σ

(
〈f ′′(x)u, u〉2

2L −
〈
f ′(x), u

〉)
. (7.2)

We thus see that the optimal norm is given by something proportional to the norm of the gradient
plus a flat amount which depends of a value defined by the matrix f ′′(x).

We can apply this formula with the gradient direction. The direction is u = − f ′(x)
‖f ′(x)‖ while the

optimal norm is

α∗ = 1
σ

(
〈f ′′(x)f ′(x), f ′(x)〉2

2L‖f ′(x)‖4 + ‖f ′(x)‖
)
.

If write the full step,

α∗u = − 1
σ

(
〈f ′′(x)f ′(x), f ′(x)〉2

2L‖f ′(x)‖5 + 1
)
f ′(x),

we can easily see that the improved step is in fact the old step − 1
σf
′(x) plus a "constant" which

depends only of the direction of the steepest descend. Therefore, when we are far from the
optimum, ‖f ′(x)‖ will be very big, and the optimal norm will tend to the norm of the gradient
step.

7.4 Minimizing the relaxation of the γ-model: the θ-method

We have seen before that minimizing the γ-model is hard, and we have also seen that when we
fixed a direction then we can compute easily the associated optimal norm. We will thus see here
a new method which consists in minimizing a model which is very similar to the γ-model, the

46

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

θ-model (see (4.8)):

mθ(y) = f(x)+
〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
+L‖y−x‖3

(
θx(y)(1− θx(y))

2 + θx(y)3

6

)
.

Suppose now that θx(y) < 1. The new iterate xk+1 is thus equal to

xk+1 = arg min
y

[〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
+ L‖y − x‖3

(
θx(y)(1− θx(y))

2

)]
.

because θ3(y)‖y−x‖3 is in fact constant, like f(x). Also, the model need 3 parameters in theory,
but in practice we just need to estimate L and (σ− µ), so we do not have more parameters than
before. Note that the θ-model is convex by construction.

7.4.1 Minimizing the model

We will now use another model which implies θx(y) instead of γx(y):

θx(y) = min
{

1 ; σ − µ
L‖y − x‖

}
; γx(y) = min

{
1; 〈[σI − f

′′(x)](y − x), y − x〉
L‖y − x‖3

}
.

The difference between the two is the lower-approximation of f ′′(x) by µI. The main advantage
is to avoid a dependence with the direction y − x and the value of θx(y). By consequence the
first-order condition when θx(y) < 1 is much simpler than for the γ-method:

f ′(x) + f ′′(x)(y − x) + (σ − µ)(y − x)− (σ − µ)2

2L
(y − x)
‖y − x‖

= 0. (7.3)

Now, denote y − x by αu where ‖u‖ = 1. We have thus

f ′(x) + αf ′′(x)u+ α(σ − µ)u− (σ − µ)2

2L u = 0. (7.4)

Let us write u in function of α:

u = −
(
α
[
f ′′(x) + (σ − µ)I

]
− (σ − µ)2

2L I

)−1

f ′(x), ‖u‖ = 1, α >
σ − µ
L

(⇔ θx(x+αu) < 1).

We thus need to find the right α such that the norm of u is equal to one. We can find the solution
to this equation with a binary search algorithm (where at each step we solve a linear system of
n variables). We will prove that the norm of the right-hand-side of the equation decreases when
α becomes larger. Let

A = f ′′(x) + (σ − µ)I, cI = (σ − µ)2

2L I.

Let us use the SVD algorithm on A. Since A is square and symmetric, the SVD of A is UΣUT ,

47

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

where UTU = UUT = I and Σ is diagonal. Indeed,

u = −
(
αUΣUT − cUUT

)−1
f ′(x) = −U (αΣ− c)−1 UT f ′(x).

Let us call v = UT f ′(x). We have thus

‖u‖2 = ‖(αΣ− c)−1v‖2 =
n∑
i=1

(
vi

ασi − c

)2
.

It is now clear that ‖u‖ decreases when we increase α. We can thus use the binary search algorithm
to solve the intermediate minimization problem (or any variant, like the secant method, which
is faster): If the norm of u is below one, then we need to increase α, and if the norm of u is too
large then we need to decrease α. Let us now prove that, for all i, we have

ασi − c > 0. (7.5)

Let us first have a lower bound on σi, the singular values of A. Indeed,

A = f ′′(x) + (σ − µ)I � σI ⇒ σi ≥ σ.

Since we forced α to be larger than σ−µ
L , the product ασi is bounded as follow:

ασi ≥ σ
σ − µ
L

⇒ ασi
c
≥ 2σ
σ − µ

> 2,

leading to the fact that (7.5) is true.

We have already a lower-bound for α, but we need also an upper bound αub in order to run the
binary-search. We will now compute an upper-bound using (7.4). Indeed,

α‖f ′′(x)u+ (σ − µ)u‖ ≤ ‖f ′(x)‖+ (σ − µ)2

2L .

Since f ′′(x) � µI, we have

α ≤ 1
σ

(
‖f ′(x)‖+ (σ − µ)2

2L

)
.

We can thus now write explicitly our specific binary-search algorithm to find the minimum of the
θ−model.

Initialization : Let αlb = σ−µ
L and αub = 1

σ

(
‖f ′(x)‖+ (σ−µ)2

2L

)
.

While αub − αlb >tol:

1. Compute αnew = αub−αlb
2 , and u = −

(
α [f ′′(x) + (σ − µ)I]− (σ−µ)2

2L I
)−1

f ′(x).

2. If ‖u‖ > 1, then αlb = αnew. Else, αub = αnew.

48

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

Note that in this section we have considered the binary search algorithm, but the secant method
(or the Newton’s method) can be also used for better performances.

7.4.2 Complexity analysis

We will now analyze the complexity of the θ-method. There is no a priori reason of having a
method which is better than the gradient method, so we will compare at the end the maximum
number of iterations of the two algorithms. We will suppose that we are far from the solution, so
that θ(y) < 1. Let us take (7.3) and call yθ the solution of this equation. Indeed, if we use (4.7),

‖f ′(yθ)‖ = ‖f ′(yθ)− f ′(x)−
〈
f ′′(x), yθ − x

〉
−
(

1− θx(yθ)
2

)
(σ − µ)(yθ − x)‖

≤ ‖f ′(yθ)− f ′(x)−
〈
f ′′(x), yθ − x

〉
‖+

(
1− θx(yθ)

2

)
(σ − µ)‖yθ − x‖

≤ L‖yθ − x‖2
(
θx(yθ)−

θ2
x(yθ)

2

)
+
(

1− θx(yθ)
2

)
(σ − µ)‖yθ − x‖

= L‖yθ − x‖2
(
2θx(yθ)− θ2

x(yθ)
)
.

If we replace θx(yθ) in the last inequality, we can deduce

‖f ′(yθ)‖
2(σ − µ) + σ − µ

2L ≤ ‖yθ − x‖. (7.6)

Also, we can use one more time (7.3) multiplied by yθ − x:

0 =
〈
f ′(x), yθ − x

〉
+
〈
f ′′(x)(yθ − x), yθ − x

〉
+
(
θx(y)− θ2

x(y)
2

)
L‖y − x‖3. (7.7)

This result can be injected in (4.8) by replacing 〈f ′(x), yθ − x〉. Therefore,

f(x)− f(yθ) ≥
1
2
〈
f ′′(x)(yθ − x), yθ − x

〉
+ L‖yθ − x‖3

(
θx(yθ)

2 − θ3
x(yθ)

6

)
. (7.8)

Since for all z ∈ [0, 1] we have z
2−

z3

6 ≥
1
3z, and because f ′′(x) is strongly convex, we can transform

the inequality (7.8) into something very similar to (3.12).

f(x)− f(yθ) ≥
µ

2 ‖yθ − x‖
2 + θx(yθ)L

3 ‖yθ − x‖3 =
(
σ

3 + µ

6

)
‖yθ − x‖2.

We can now use (7.6) on this inequality to get

f(x)− f(yθ) ≥
(
σ

3 + µ

6

)(‖f ′(yθ)‖
2(σ − µ) + σ − µ

2L

)2
. (7.9)

We can see in this relation two very interesting things. The first one is the constant term: at

49

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

each iteration, the model will decrease of at least
(
σ

3 + µ

6

)(
σ − µ

2L

)2
.

It is due to the fact that we need to be far enough from the optimal point. The second thing is
that the decrease is proportional to the square of ‖f ′(x)‖, like in the gradient method. We can
thus expect a linear rate of convergence for this method.

Now, we will drop the constant term in (7.9), and we will replace ‖f ′(x)‖ using (2.4). Therefore,

δk − δk+1 ≥
µ

2(σ − µ)2

(
σ

3 + µ

6

)
δk+1.

For more convenience we will call G the constant in the right hand side of the above inequality.
We can now deduce the rate of convergence of the method:

δk ≤
1

1 +G
δk−1 ≤ (1 +G)−kδ0.

Suppose we want to reach ε > 0 not too small, the following condition is thus sufficient

e−kGδ0 ≤ ε.

The number of iterations kmax is finally bounded by

kmax ≤ G log δ0
ε
.

We have here, as expected, a linear rate of convergence. This method can thus be used in the
first phase of the minimization process.

7.4.3 Comparison with the quadratic model

In this section we will compare the θ-model with the quadratic model used by the gradient
method. We are interested in a condition on y or the norm of y − x such that mθ(y) ≤ m2(y)
when θx(y) < 1. After the expansion of θx(y) we find

1
2
〈
[f ′′(x)− µ](y − x), y − x

〉
− (σ − µ)2

2L ‖y − x‖+ (σ − µ)3

6L2 ≤ 0.

Suppose that y − x = αu and the direction u is fixed. Let us call E = 〈[f ′′(x)−µ]u,u〉
σ−µ the relative

error of the approximation of f ′′(x) by µI and ∆ = σ−µ
L . Then we can find a condition on α :

α ≤ ∆
E

(
1 +

√
1− 4

3E
)
.

If the error E is too big, then we do not have a solution to the second order equation, meaning

50

CHAPTER 7. MINIMIZING A MORE ACCURATE MODEL: THE γ-METHOD

that the θ-model will be in this case strictly above the quadratic model. To avoid this fact, we
should have µ as big as possible and σ close to µ.

This condition also tells us that the θ-method is worse that the gradient method when we are
very far from the optimum. The method becomes efficient more or less at the same time when
the γ-method becomes much faster than the gradient. However, the θ-method can be used to
compute another direction, different from the gradient, which can be used in combination with
the γ−method with fixed direction.

7.5 Conclusion

In this chapter, we have seen several methods, with their own benefits and drawbacks. The
common and main problem of all previous methods is the presence of two parameters (L and σ
or L and (σ − µ)) in the model needed to compute the next iterate.

The γ−method is the best algorithm in term of maximum number of iterations. However, the
subproblem is hard to minimize because its structure is quite complex. However, when the di-
rection is fixed, everything becomes much easier and we can have the expression of the optimal
norm (i.e. the value of the norm which minimizes the γ-model) associated to any direction.

We have also analysed the θ−method, much easier to compute. This scheme is finally not as good
as expected, because of its only local efficiency (when we are far, the gradient method is better,
and when we are too close we have to switch to the CNM method). The scheme is more useful
when used to compute a direction, because we can adapt the norm with the γ-model. However
in this case we will need 3 parameters, because σ appears alone in the γ-model.

Finally, assuming that all parameters are known, the best method which makes a compromise
between the difficulty of the resolution of the sub-problem and the total complexity should be an
hybrid method using the expression of the optimal norm, which choose the best step between the
direction given by the gradient or by the θ-method. This new hybrid scheme is by construction
more efficient than the old one but slower than the γ-method in term of number of iterations.
For all previous methods the number of parameters can be a real difficulty when used in an
adaptive algorithm. We will thus see in the next section a new algorithm which will use only one
parameter.

51

Chapter 8
Using line-search on the parameter L:
adaptive CNM

8.1 Motivations

In the previous sections we have seen methods which need more than one parameter, like the
hybrid method of the γ-method. However, the two algorithms works at least as good as the
gradient. They are all based on a local cubic and global quadratic upper-approximation of the
function f ∈ Sσ,L.

We have seen that the CNM works bad on f ∈ Sµσ,L because the method is too conservative. We
will thus now change the strategy for this class: we will use only the cubic model (2.12) used by
the CNM but this time we will try to find a smaller L at each iteration. The consequence of this
choice is that the model will not be a global upper-approximation anymore, but we will try to
keep the inequality at xk+1 to ensure a certain decrease.

8.2 Intuition: A smaller L for a larger step size

The main reason of using a line-search on the parameter L instead of the norm of the step (y−x)
is because the direction will also change, leading to a better theoretical decreasing. However by
changing L, the norm of the step will also be modified.

We will see here the link between the parameter L and the norm of the step (y − x). Indeed, by
using the cubic model (3.2), we can deduce the step (y − x) by an implicit way. Let us denote
s = T − x and r = ‖T − x‖. We have thus

s = −
(
f ′′(x) + Lr

2 I

)−1
f ′(x).

We cannot say that Lr is a constant, because we have to follow ‖s‖ = r. We will thus one more
time use the SVD of f ′′(x) = UΣUT because f ′′(x) is symmetric. We can thus rewrite the step

s = −
(
UΣUT + UUT

Lr

2

)−1
f ′(x) = −U

(
Σ + Lr

2 I

)−1
UT f ′(x).

53

CHAPTER 8. USING LINE-SEARCH ON THE PARAMETER L: ADAPTIVE CNM

Let us call UT f ′(x) = v. We have thus

‖s‖2 =
n∑
i=1

(
vi

σi + L
2 r

)2

.

Finally, using the fact that ‖s‖2 = r2,

1 =
n∑
i=1

(
vi

σir + L
2 r

2

)2

.

We can see with this equation that a decrease of L must be compensated by an increase of the
norm of the step s. We can also see that the impact of the decrease of L is more important when
the singular values of f ′′(x) are small.

8.3 The line-search algorithm

In this section we will present the line-search algorithm itself. Our goal is to find one good value
L̃ under the condition

f(TL̃(x)) ≤ m3(x; L̃)

where m3(x; L̃) is the cubic model used with another value of L. The subroutine is described
below.
Subroutine: Line search on parameter L
Goal: Find a good value for parameter L, called L̃.
Initialization : Choose L0 = L and i = 0.
Iteration :

1. Set i = i+ 1 and Li = 2−iL.

2. Compute Ti = TLi(x).

3. If [f(Ti) ≤ m3(x;Li)] go to step 1.
Else, go to step 4.

4. Return L̃ = Li−1.
The goal of this algorithm is to divide at each step the old value of the parameter by two, until
f(TL̃/2) ≥ m3(x; L̃/2). We are now sure that L̃ is quite small and we can thus deduce the rate of
convergence of the algorithm by analyzing the decrease of the modified cubic model.

We need to be careful when we use this algorithm: such a value of L does not always exists. For
example, suppose that for some point x we have f ′′(x) = σI, and for any other points y we have
f ′′(y) ≺ f ′′(x). In this case, according to inequality (4.4), we will thus have

f(y) ≤ f(x) +
〈
f ′(x), y − x

〉
+ 1

2
〈
f ′′(x)(y − x), y − x

〉
.

54

CHAPTER 8. USING LINE-SEARCH ON THE PARAMETER L: ADAPTIVE CNM

One way to avoid this case is to test the "cubic" model with L = 0 (indeed, in this case it becomes
quadratic) before running the line-search subroutine.

However, such a value of L can be also as close as possible to zero. In this case the line search
will be very slow. The solution is to set a lower bound on L. For example, we can stop the
algorithm when for some i the decrease of the cubic model with Li is half a time the decrease of
the classical Newton model:

m3(x;Li) ≤ f(x)− 1
2
〈
f ′(x), f ′′(x)−1f ′(x)

〉
We can also fix an arbitrary Llb in advance, and stop when Li ≤ Llb.

8.4 Complexity analysis

We will now analyze the complexity of the line-search algorithm. Suppose that we have fixed Llb
in advance, and we start with the value L. Then in this case the complexity of the line-search
subroutine is

O
(

log2
L

Llb

)
. (8.1)

Let us now estimate the number of iterations of the main algorithm. We will compute the
biggest possible value for L̃, denoted by Lub. Let us fix some x. Indeed, since for any y we have
f(y) ≤ mγ(y), Lub must follow

maxLub s.t. m3(y, Lub) ≥ mγ(y) and m3(y, Lub/2) ≤ mγ(y).

By consequence, we see that Lub satisfiesm3(y, Lub/2) = mγ(y). If we develop the two expressions
we find:

Lub
2 ‖y − x‖

3 = L

6 ‖y − x‖
3
(
γx(y)(1− γx(y))

2 + γx(y)
6

)
.

Leading to

Lub = 2L
6

(
γx(y)(1− γx(y))

2 + γ3
x(y)
6

)
.

We can thus conclude that

f(TL̃) ≤ m3(TL̃, L̃) ≤ m3(TLub , Lub) ≤ mγ(T2L; 2L).

This result is very surprising: with a line-search on the parameter L we are able to reach an
accuracy comparable to the γ-model with a small error on the parameter L. It means that
the total complexity of our algorithm, when applied on Sµσ,L is simply (8.1) times (6.9) with L

55

CHAPTER 8. USING LINE-SEARCH ON THE PARAMETER L: ADAPTIVE CNM

multiplied by two:

O
((

log2
Llb
L

)[
σ

µ
log

(
4L2

σ3 δ0

)
+ log2

(
log 1

ε

)])
.

8.5 Discussion

We have seen here an adaptive algorithm which is an improvement of the CNM: with the line-
search subroutine, we are able to achieve an accuracy almost as good as the γ-model, at the price
of an additional factor log2

Llb
L . With this little trick we have a linear rate of convergence at the

first phase of the minimization process instead of O
(√

LD
µ

)
iterations.

We have proposed here the strategy of dividing by two the value of L at each iteration of the
line-search. However, one can try another type of algorithm like a secant method, in order to
try to minimize the complexity of the line-search. In the same idea, we can decrease a little bit
the number of iterations of the sub-problem by knowing a better upper-bound for L0 or Llb if we
have an information about σ. Suppose that σ is know, then L̃ should be

L̃ ≈ 2L
6

(
γx(x+ s)(1− γx(x+ s))

2 + γ3
x(x+ s)

6

)

for s the gradient step − 1
σf
′(x) (or the improved gradient step using the γ-model). It comes

from the fact that when we are far from the optimum the CNM step is similar to the gradient
step. The subroutine can by consequence be improved with some various techniques but the
complexity in O (log2(Llb/L)) is already quite small.

56

Conclusion

The second order methods were often used at the termination stage of the minimization process
because of their quadratic convergence. In this master thesis we tried to analyse the global com-
plexity of such methods and answer to the following question, presented in [2]: "For the problem
class Sµσ,L, can we get any advantages from the second order schemes being used at the initial
stage of minimization process?".

We first noticed that the CNM converges very slowly on this class of functions because the
steps were too conservatives, caused by the global cubic model. Once this problem was identi-
fied, we tried to improve the global performance of the scheme with a switching strategy: the
upper-estimation became locally cubic but globally quadratic. With this trick the other methods
became much more efficient and had a complexity comparable to the one of the gradient method
when used at the first stage of the minimization process.

However, the answer to the above question is quite mitigated. Assuming that we know all con-
stants, at the very beginning of the algorithm we have seen that our methods are comparable to a
simple gradient step but the computation of a second-order step is at least as hard as computing
the gradient step. So there is a priori no reason to believe that second-order schemes are much
more efficient than first-order methods on the class Sµσ,L.

Nevertheless in this work we have only analysed simple steps methods. But it is well known that
with a multi-step strategy, like the fast gradient method presented in [4], we are able to improve
the complexity bound. If we want to know if the above methods are very comparable to the
first-order algorithms, then we need to derive their accelerated version and compare it with the
complexity of the fast-gradient.

Also, all of the algorithms presented in this thesis work only on unconstrained domains. For
many practical problems we have some constrains to handle (for example, let us say that x ∈ Q
for Q a convex set). The way to avoid this problem is to choose the minimum of the sub-problem
on Q. It is shown in [3] that we can find in this case TL(x) efficiently. One improvement of all
schemes presented here can be to make a variant which works on constrained domains.

Finally, we also took care of the number of parameters present in all the methods presented
here. Note that for the CNM an adaptive algorithm is presented in [1], where the parameter L
is estimated at each iteration, and the Hessian f ′′(x) is approximated. A natural improvement
can be an adaptive algorithm which tries to estimate both L and σ.

57

Bibliography

[1] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. “Adaptive cubic regularisation
methods for unconstrained optimization. Part I: motivation, convergence and numerical re-
sults”. In: Mathematical Programming 127.2 (2011), pp. 245–295.

[2] Yurii Nesterov. “Accelerating the cubic regularization of Newton’s method on convex prob-
lems”. In: Mathematical Programming 112.1 (2008), pp. 159–181.

[3] Yurii Nesterov. “Cubic regularization of Newton’s method for convex problems with con-
straints”. In: Available at SSRN 921825 (2006).

[4] Yurii Nesterov. Introductory lectures on convex optimization. Vol. 87. Springer Science &
Business Media, 2004.

[5] Yurii Nesterov, Boris Polyak, et al. Cubic regularization of a Newton scheme and its global
performance. Universite catholique de Louvain, 2003.

59

	Acknowledgements
	Contents
	Introduction
	Definitions and notations
	General
	Convex and strongly convex functions
	Lipschitz-continuous functions
	Performance of a scheme
	Rate of convergence

	Main inequalities
	Strongly convex functions
	Functions with Lipschitz-continuous gradient
	Functions with Lipschitz-continuous Hessian

	Cubic regularization of the Newton's Method (CNM)
	Regular algorithm
	Minimal decreasing
	Accelerated algorithm

	Properties of the intersection of functional classes
	Functions with Lipschitz-continuous gradient and Hessian
	Strongly convex functions with Lipschitz-continuous Hessian
	Strongly convex functions with Lipschitz-continuous gradient and Hessian
	Relaxation of the bounds for S,L

	CNM applied to strongly convex functions
	Impact of the strong convexity assumption
	Stopping criterion
	Global complexity
	First stage of the minimization process
	Super-linear and quadratic rate of convergence
	Bound on the total number of iterations

	Examples where CNM works bad
	Intuitive example : smooth approximation of absolute value
	One-dimensional quadratic function

	Combining gradient method and CNM: the hybrid scheme
	Differences between the gradient method and CNM
	Complexity analysis
	Global complexity for convex functions
	Global complexity for strongly convex functions

	Conclusion

	Minimizing a more accurate model: the -method
	Motivations
	Complexity analysis
	The -method with non-optimal direction
	Minimizing the relaxation of the -model: the -method
	Minimizing the model
	Complexity analysis
	Comparison with the quadratic model

	Conclusion

	Using line-search on the parameter L: adaptive CNM
	Motivations
	Intuition: A smaller L for a larger step size
	The line-search algorithm
	Complexity analysis
	Discussion

	Conclusion
	Bibliography

